Download Free Fungal Metabolites Book in PDF and EPUB Free Download. You can read online Fungal Metabolites and write the review.

This handbook compiles authoritative information about fungal metabolites and their chemistry and biotechnology. The first in the reference work series “Phytochemicals”, and written by a team of international expert authors, this book provides reference information ranging from the description of fungal natural products, over their use e.g. as anticancer agents, to microbial synthesis, even spanning to the production of secondary metabolites on industrial scale. On the other hand it also describes global health issues related to aflatoxin production in foods and agriculture, including perspectives for detoxification. The handbook characterizes different compound classes derived from fungal secondary metabolites, like ergot alkaloids and aflatoxins. The discussion puts a special emphasis on how potentially useful compounds can be obtained and what applications they can find, on the one hand, and how potential dangers can be encountered on the other hand. The comprehensive chapters in this handbook will thus appeal to readers from diverse backgrounds in chemistry, biology, life sciences, and even medicine, who are working or planning to work with fungal (secondary) metabolites and their application. They provide the readers with rich sources of reference information on important topics in this field.
This three-volume set is a desirable reference for a wide range of specialists who study secondary fungal metabolites ranging from pharmaceutical house researchers, agricultural researchers, those involved in food and feed control regulation, and veterinary researchers. It discusses in depth the molecular formula of, the molecular weights of, and fungal/plant source indexes of secondary fungal metabolites.
Handbook of Toxic Fungal Metabolites presents UV, IR, 1H NMR, 13C NMR, and mass spectra for identification of known mycotoxins or related metabolites by both chemists and researchers. The handbook is oriented primarily toward fungal metabolites that elicit a toxic response in vertebrate animals. It also contains metabolites that show little or no known acute toxicity. The handbook is divided into 21 sections. Mycotoxin and fungal metabolite members are considered into each section based on their chemical relationships, except for the last four groups, Aspergillus, Penicillium, Fusarium, and miscellaneous toxins. The final section focuses on miscellaneous toxins that could not be classified under the considered categories, namely slaframine, diplodiatoxin, and roseotoxin B. This handbook is of great value to mycotoxicologists, and food and feed researchers.
The purpose of this book was not to provide a comprehensive overview of the vast arena of how fungi and fungal metabolites are able to improve human and animal nutrition and health; rather, we, as Guest Editors, wished to encourage authors working in this field to publish their most recent work in this rapidly growing journal in order for the large readership to appreciate the full potential of wonderful and beneficial fungi. Thus, this Special Issue welcomed scientific contributions on applications of fungi and fungal metabolites, such as bioactive fatty acids, pigments, polysaccharides, alkaloids, terpenoids, etc., with great potential in human and animal nutrition and health.
Filamentous fungi have long been known for their ability to produce an enormous range of unusual chemical compounds known as secondary metabolites, many of which have potentially useful antibiotic or pharmacological properties. Recent focus on fungal genomics coupled with advances in detection and molecular manipulation techniques has galvanized a revitalization of this field. Fungal Secondary Metabolism: Methods and Protocols is aimed at providing the key methodologies currently in use and necessary for accessing and exploiting the natural product information provided by the genomes of this large and varied kingdom. Written by active researchers in the field, the chapters deal with all the steps necessary, from optimization of fungal culture conditions for metabolite production, through rapid genome sequencing and bioinformatics, and genetic manipulations for functional analysis, to detection and testing of metabolites. In addition, chapters on basic science address approaches to the genetic regulation, protein biochemistry, and cellular localization of the biosynthetic pathways. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Practical and hands-on, Fungal Secondary Metabolism: Methods and Protocols encourages new investigators to enter the field and expands upon the expertise and range of skills of those already researching fungal natural products.
Microbiologists and soil scientists will find this study compelling reading. It focuses on the role of bacterial, fungal and plant secondary metabolites in soil ecosystems. Our understanding of the biological function of secondary metabolites is surprisingly limited, considering our knowledge of their structural diversity and pharmaceutical activity. This book reviews functional aspects of secondary metabolite production, with a focus on interactions among soil organisms.
Fungi occupy an important place in the natural world, as non-photosynthetic organisms, they obtain their nutrients from the degradation of organic material. They use many of their secondary metabolites to secure a place in a competitive natural environment and to protect themselves from predation. The diverse structures, biosyntheses and biological activities of fungal metabolites have attracted chemists for many years. Fungi are ubiquitous and their activities affect many aspects of our daily lives whether it be as sources of pharmaceuticals and food or as spoilage organisms and the causes of.
The book deals with the application of fungi and the strategic management of some plant pathogens. It covers fungal bioactive metabolites, with emphasis on those secondary metabolites that are produced by various endophytes, their pharmaceutical and agricultural uses, regulation of the metabolites, mycotoxins, nutritional value of mushrooms, prospecting of thermophilic and wood-rotting fungi, and fungi as myconano factories. Strategies for the management of some plant pathogenic fungi of rice and soybean have also been dealt with. Updated information for all these aspects has been presented and discussed in different chapters.
Fungi have an integral role to play in the development of the biotechnology and biomedical sectors. The fields of chemical engineering, Agri-food,Biochemical, pharmaceuticals, diagnostics and medical device development all employ fungal products, with fungal biomolecules currently used in a wide range of applications, ranging from drug development to food technology and agricultural biotechnology. Understanding the biology of different fungi in diverse ecosystems, as well as their biotropic interactions with other microorganisms, animals and plants, is essential to underpin effective and innovative technological developments. Fungal Biomolecules is a keystone reference, integrating branches of fungal product research into a comprehensive volume of interdisciplinary research. As such, it: reflects state-of-the-art research and current emerging issues in fungal biology and biotechnology reviews the methods and experimental work used to investigate different aspects of fungal biomolecules provides examples of the diverse applications of fungal biomolecules in the areas of food, health and the environment is edited by an experienced team, with contributions from international specialists This book is an invaluable resource for industry-based researchers, academic institutions and professionals working in the area of fungal biology and associated biomolecules for their applications in food technology, microbial and biochemical process, biotechnology, natural products, drug development and agriculture.