Download Free Fundamentals Of Sum Frequency Spectroscopy Book in PDF and EPUB Free Download. You can read online Fundamentals Of Sum Frequency Spectroscopy and write the review.

The first book on the topic, and written by the founder of the technique, this comprehensive resource provides a detailed overview of sum-frequency spectroscopy, its fundamental principles, and the wide range of applications for surfaces, interfaces, and bulk. Beginning with an overview of the historical context, and introductions to the basic theory of nonlinear optics and surface sum-frequency generation, topics covered include discussion of different experimental arrangements adopted by researchers, notes on proper data analysis, an up-to-date survey commenting on the wide range of successful applications of the tool, and a valuable insight into current unsolved problems and potential areas to be explored in the future. With the addition of chapter appendices that offer the opportunity for more in-depth theoretical discussion, this is an essential resource that integrates all aspects of the subject and is ideal for anyone using, or interested in using, sum-frequency spectroscopy.
Fundamentals and Applications of Nonlinear Nanophotonics includes key concepts of nonlinear nanophotonics, computational and modeling techniques to design these materials, and the latest advances. This book addresses the scientific literature on nanophotonics while most existing books focus almost exclusively on the linear aspects of light-matter interaction at the nanoscale. Sections cover nonlinear optics of sub-wavelength photonic nanostructured materials, review nonlinear optics of bound-states in the continuum, nonlinear optics of chiral plasmonic metasurfaces, nonlinear hyperbolic nanomaterials, nonlinear topological photonics, plasmonic lattice solitons, and more. This book is suitable for academics and industry professionals working in the discipline of materials science, engineering and nanotechnology. - Discusses advances in nonlinear optics research such as plasmonics, topological photonics and emerging materials - Reviews the latest computational methods to model and design nonlinear photonic materials - Introduces key principles of advanced concepts in nonlinear optics of bound-states in a continuum and symmetries in nonlinear nano-optics
Foundations of Nonlinear Optical Microscopy Concise yet comprehensive resource presenting the foundations of nonlinear optical microscopy Foundations of Nonlinear Optical Microscopy brings together all relevant principles of nonlinear optical (NLO) microscopy, presenting NLO microscopy within a consistent framework to allow for the origin of the signals and the interrelation between different NLO techniques to be understood. The text provides rigorous yet practical derivations, which amount to expressions that can be directly related to measured values of resolution, sensitivity, and imaging contrast. The book also addresses typical questions students ask, and answers them with clear explanations and examples. Readers of this book will develop a solid physical understanding of NLO microscopy, appreciate the advantages and limitations of each technique, and recognize the exciting possibilities that lie ahead. Foundations of Nonlinear Optical Microscopy covers sample topics such as: Light propagation, focusing of light, pulses of light, classical description of light-matter interactions, and quantum mechanical description of light-matter interactions Molecular transitions, selection rules, signal radiation, and detection of light Multi-photon fluorescence and pump-probe microscopy Harmonic generation, sum-frequency generation, and coherent Raman scattering Senior undergraduate and graduate students in chemistry, physics, and biomedical engineering, along with students of electrical engineering and instructors in both of these fields, can use the information within Foundations of Nonlinear Optical Microscopy and the included learning resources to gain a concise yet comprehensive overview of the subject.
Optical second harmonic and sum-frequency generation has evolved into a useful spectroscopic tool for material characterization, especially as a viable and powerful technique for probing surfaces and interfaces. This book serves as an introduction on the technique. It provides a comprehensible description on the basics of the technique and gives detailed accounts with illustrating examples on the wide range of applications of the technique. It clearly points out the unique capabilities of the technique as a spectroscopic tool for studies of bulk and interface structures in different disciplines.This book is an updated version of an earlier book on the same subject, but it puts more emphasis on physical concepts and description. It underscores recent advances of sum-frequency spectroscopy at the technical front as well as over its wide range of applications, with the author's perspective in each area. Most chapters end with a section of summary and prospects that hopefully can help stimulate interest to further develop the technique and explore possibilities of applying the technique.
This book describes fundamental theory and recent advances of sum frequency generation (SFG) spectroscopy. SFG spectroscopy is widely used as a powerful tool of surface characterization, although theoretical interpretation of the obtained spectra has been a major bottleneck for most users. Recent advances in SFG theory have brought about a breakthrough in the analysis methods beyond conventional empirical ones, and molecular dynamics (MD) simulation of SFG spectroscopy allows for simultaneous understanding of observed spectra and interface structure in unprecedented detail. This book explains these recently understood theoretical aspects of SFG spectroscopy by the major developer of the theory. The theoretical topics are treated at basic levels for undergraduate students and are described in relation to computational chemistry, such as molecular modeling and MD simulation, toward close collaboration of SFG spectroscopy and computational chemistry in the near future.
Molecular and Laser Spectroscopy, Advances and Applications: Volume 2 gives students and researchers an up-to-date understanding of the fast-developing area of molecular and laser spectroscopy. This book covers basic principles and advances in several conventional as well as new and upcoming areas of molecular and laser spectroscopy, such as a wide range of applications in medical science, material science, standoff detection, defence and security, chemicals and pharmaceuticals, and environmental science. It covers the latest advancements, both in terms of techniques and applications, and highlights future projections. Editors V.P. Gupta and Yukihiro Ozaki have brought together eminent scientists in different areas of spectroscopy to develop specialized topics in conventional molecular spectroscopy (Cavity ringdown, Matrix Isolation, Intense THz, Far- and Deep- UV, Optogalvanic ), linear and nonlinear laser spectroscopy (Rayleigh & Raman Scattering), Ultrafast Time-resolved spectroscopy, and medical applications of molecular spectroscopy. and advanced material found in research articles. This new volume expands upon the topics covered in the first volume for scientists to learn the latest techniques and put them to practical use in their work. - Covers several areas of spectroscopy research and expands upon topics covered in the first volume - Includes exhaustive lists of research articles, reviews, and books at the end of each chapter to further learning objectives - Uses illustrative examples of the varied applications to provide a practical guide to those interested in using molecular and laser spectroscopy tools in their research
This book embraces all physiochemical aspects of the structure and molecular dynamics of water, focusing on its role in biological objects, e.g. living cells and tissue, and in the formation of functionally active structures of biological molecules and their ensembles. Water is the single most abundant chemical found in all living things. It offers a detailed look into the latest modern physical methods for studying the molecular structure and dynamics of the water and provides a critical analysis of the existing literature data on the properties of water in biological objects. Water as a chemical reagent and as a medium for the formation of conditions for enzymatic catalysis is a core focus of this book. Although well suited for active researchers, the book as a whole, as well as each chapter on its own, can be used as fundamental reference material for graduate and undergraduate students throughout chemistry, physics, biophysics and biomedicine.
Physical Chemistry of Gas-Liquid Interfaces, the first volume in the Developments in Physical & Theoretical Chemistry series, addresses the physical chemistry of gas transport and reactions across liquid surfaces. Gas–liquid interfaces are all around us, especially within atmospheric systems such as sea spry aerosols, cloud droplets, and the surface of the ocean. Because the reaction environment at liquid surfaces is completely unlike bulk gas or bulk liquid, chemists must readjust their conceptual framework when entering this field. This book provides the necessary background in thermodynamics and computational and experimental techniques for scientists to obtain a thorough understanding of the physical chemistry of liquid surfaces in complex, real-world environments. - 2019 PROSE Awards - Winner: Category: Chemistry and Physics: Association of American Publishers - Provides an interdisciplinary view of the chemical dynamics of liquid surfaces, making the content of specific use to physical chemists and atmospheric scientists - Features 100 figures and illustrations to underscore key concepts and aid in retention for young scientists in industry and graduate students in the classroom - Helps scientists who are transitioning to this field by offering the appropriate thermodynamic background and surveying the current state of research