Download Free Fundamentals Of Statistical Signal Processing Detection Theory Book in PDF and EPUB Free Download. You can read online Fundamentals Of Statistical Signal Processing Detection Theory and write the review.

"For those involved in the design and implementation of signal processing algorithms, this book strikes a balance between highly theoretical expositions and the more practical treatments, covering only those approaches necessary for obtaining an optimal estimator and analyzing its performance. Author Steven M. Kay discusses classical estimation followed by Bayesian estimation, and illustrates the theory with numerous pedagogical and real-world examples."--Cover, volume 1.
V.2 Detection theory -- V.1 Estimation theory.
The purpose of this book is to introduce the reader to the basic theory of signal detection and estimation. It is assumed that the reader has a working knowledge of applied probabil ity and random processes such as that taught in a typical first-semester graduate engineering course on these subjects. This material is covered, for example, in the book by Wong (1983) in this series. More advanced concepts in these areas are introduced where needed, primarily in Chapters VI and VII, where continuous-time problems are treated. This book is adapted from a one-semester, second-tier graduate course taught at the University of Illinois. However, this material can also be used for a shorter or first-tier course by restricting coverage to Chapters I through V, which for the most part can be read with a background of only the basics of applied probability, including random vectors and conditional expectations. Sufficient background for the latter option is given for exam pIe in the book by Thomas (1986), also in this series.
The Second Edition is an updated revision to the authors highly successful and widely used introduction to the principles and application of the statistical theory of signal detection. This book emphasizes those theories that have been found to be particularly useful in practice including principles applied to detection problems encountered in digital communications, radar, and sonar. Detection processing based upon the fast Fourier transform
"For those involved in the design and implementation of signal processing algorithms, this book strikes a balance between highly theoretical expositions and the more practical treatments, covering only those approaches necessary for obtaining an optimal estimator and analyzing its performance. Authoer Steven M. Kay discusses classical estimation followed by Bayesian estimation, and illustrates the theory with numerous pedagogical and real-world examples."--Cover, volume 1.
This book describes the essential tools and techniques of statistical signal processing. At every stage theoretical ideas are linked to specific applications in communications and signal processing using a range of carefully chosen examples. The book begins with a development of basic probability, random objects, expectation, and second order moment theory followed by a wide variety of examples of the most popular random process models and their basic uses and properties. Specific applications to the analysis of random signals and systems for communicating, estimating, detecting, modulating, and other processing of signals are interspersed throughout the book. Hundreds of homework problems are included and the book is ideal for graduate students of electrical engineering and applied mathematics. It is also a useful reference for researchers in signal processing and communications.
This book embraces the many mathematical procedures that engineers and statisticians use to draw inference from imperfect or incomplete measurements. This book presents the fundamental ideas in statistical signal processing along four distinct lines: mathematical and statistical preliminaries; decision theory; estimation theory; and time series analysis.
Nowadays, many aspects of electrical and electronic engineering are essentially applications of DSP. This is due to the focus on processing information in the form of digital signals, using certain DSP hardware designed to execute software. Fundamental topics in digital signal processing are introduced with theory, analytical tables, and applications with simulation tools. The book provides a collection of solved problems on digital signal processing and statistical signal processing. The solutions are based directly on the math-formulas given in extensive tables throughout the book, so the reader can solve practical problems on signal processing quickly and efficiently. FEATURES Explains how applications of DSP can be implemented in certain programming environments designed for real time systems, ex. biomedical signal analysis and medical image processing. Pairs theory with basic concepts and supporting analytical tables. Includes an extensive collection of solved problems throughout the text. Fosters the ability to solve practical problems on signal processing without focusing on extended theory. Covers the modeling process and addresses broader fundamental issues.
Covering the fundamentals of detection and estimation theory, this systematic guide describes statistical tools that can be used to analyze, design, implement and optimize real-world systems. Detailed derivations of the various statistical methods are provided, ensuring a deeper understanding of the basics. Packed with practical insights, it uses extensive examples from communication, telecommunication and radar engineering to illustrate how theoretical results are derived and applied in practice. A unique blend of theory and applications and over 80 analytical and computational end-of-chapter problems make this an ideal resource for both graduate students and professional engineers.
The main thrust is to provide students with a solid understanding of a number of important and related advanced topics in digital signal processing such as Wiener filters, power spectrum estimation, signal modeling and adaptive filtering. Scores of worked examples illustrate fine points, compare techniques and algorithms and facilitate comprehension of fundamental concepts. Also features an abundance of interesting and challenging problems at the end of every chapter.