Download Free Fundamentals Of Spacecraft Charging Book in PDF and EPUB Free Download. You can read online Fundamentals Of Spacecraft Charging and write the review.

As commercial and military spacecraft become more important to the world's economy and defense, and as new scientific and exploratory missions are launched into space, the need for a single comprehensive resource on spacecraft charging becomes increasingly critical. Fundamentals of Spacecraft Charging is the first and only textbook to bring together all the necessary concepts and equations for a complete understanding of the subject. Written by one of the field's leading authorities, this essential reference enables readers to fully grasp the newest ideas and underlying physical mechanisms related to the electrostatic charging of spacecraft in the space environment. Assuming that readers may have little or no background in this area, this complete textbook covers all aspects of the field. The coverage is detailed and thorough, and topics range from secondary and backscattered electrons, spacecraft charging in Maxwellian plasmas, effective mitigation techniques, and potential wells and barriers to operational anomalies, meteors, and neutral gas release. Significant equations are derived from first principles, and abundant examples, exercises, figures, illustrations, and tables are furnished to facilitate comprehension. Fundamentals of Spacecraft Charging is the definitive reference on the physics of spacecraft charging and is suitable for advanced undergraduates, graduate-level students, and professional space researchers.
This book will explore the fundamentals of spacecraft charging: why it occurs, when it occurs, where it occurs, how to measure it, and its side effects. It will discuss state-of-the-art spacecraft charging technologies, which will be explained in detail and with pedagogical emphasis. Exercises for further learning will be included to facilitate a deeper understanding of the material. It will be of interest to advanced undergraduate and graduate students, in addition to researchers working in physics and engineering keen to understand more about spacecraft interactions with space plasmas. Key Features: Translates complex terminology into accessible language Authored by experts in the field Provides worked examples and exercises for further learning
The definitive guide to the modern body of spacecraft charging knowledge—from first principles for the beginner to intermediate and advanced concepts The only book to blend the theoretical and practical aspects of spacecraft charging, Guide to Mitigating Spacecraft Charging Effects defines the environment that not only creates the aurora, but which also can have significant effects on spacecraft, such as disruption of science measurements and solar arrays from electrostatic discharge (ESD). It describes in detail the physics of the interaction phenomenon as well as how to construct spacecraft to enhance their survivability in the harsh environment of space. Combining the authors' extensive experience in spacecraft charging—and in their provision of design support to NASA, JPL, the commercial satellite market, and numerous other projects—this incredible book offers both a robust physics background and practical advice for neophytes in the field and experienced plasma physicists and spacecraft engineers. In addition to containing numerous equations, graphs, tables, references, and illustrations, Guide to Mitigating Spacecraft Charging Effects covers: Solar cell technology, especially higher voltage arrays, and the new design approaches that are appropriate for them Information about the space plasma environment New analytic computer codes to analyze spacecraft charging Spacecraft anomalies and failures which emphasized designs that are of greater importance than others
A Spacecraft Charging Technology Conference, sponsored by the USAF and NASA, was held in October 1976. The Proceedings contain over 50 papers dealing with subjects including: (1) the geosynchronous plasma environment, (2) spacecraft modeling, (3) spacecraft materials characterization, (4) spacecraft materials development, (5) satellite design and test. In addition, an executive summary and the transcript of a panel discussion are included. (Author).
This book explains how satellites and spacecraft materials can become charged to tens or even thousands of volts when plasmas in the space environment interact with them. It provides an overview of the what, when, where, how, and why spacecraft charging occurs. Coverage includes: properties of spacecraft charging and the underlying physical mechanisms; causes of energetic plasmas; how to protect spacecraft entering the harsh space environment; adverse effects of electrostatic discharges on spacecraft; spacecraft charging in auroral region; and deep dielectric charging by energetic electrons as causes of satellite anomalies and failures
Space weather is one of the most significant natural hazards to human life and health. Conditions of the sun and in the solar wind, magnetosphere, ionosphere, and thermosphere can influence the performance and reliability of space-borne and ground-based technological systems. If conditions in the space environment are adverse, they can cause disruption of satellite operations, communications, navigation, and electric power distribution grids, leading to a variety of socioeconomic losses. This book provides an overview of our current knowledge and theoretical understanding of space weather formation and covers all major topics of this phenomena, from the sun to the Earth’s ionosphere and thermosphere, thus providing a fully updated review of this rapidly advancing field. The book brings together an outstanding team of internationally recognised contributors to cover topics such as solar wind, the earth's magnetic field, radiation belts, the aurora, spacecraft charging, orbital drag and GPS.
High-level spacecraft charging events in sunlight are discussed and statistically analyzed to determine environmental parameters critical to charging and the region of space near geosynchronous altitude where charging occurs. Significant levels of spacecraft charging are shown to occur only between 1900 LT and 0900 LT at any altitude or latitude of the SCATHA satellite orbit. High-level charging is shown to occur only during periods when the magnetic activity index is 2+ or greater. Distribution functions of energetic electrons and ions are presented for 3 high-level charging periods on days 114, 241 and 363, 1979. Moments of the distribution functions are determined, and fitting techniques used to derive two-Maxwellian densities and temperatures are discussed. Results are provided in a format usable in satellite design specifications.