Download Free Fundamentals Of Soft Computing And Intelligent System Book in PDF and EPUB Free Download. You can read online Fundamentals Of Soft Computing And Intelligent System and write the review.

Traditional artificial intelligence (AI) techniques are based around mathematical techniques of symbolic logic, with programming in languages such as Prolog and LISP invented in the 1960s. These are referred to as "crisp" techniques by the soft computing community. The new wave of AI methods seeks inspiration from the world of biology, and is being used to create numerous real-world intelligent systems with the aid of soft computing tools. These new methods are being increasingly taught at the upper end of the curriculum, sometimes as an adjunct to traditional AI courses, and sometimes as a replacement for them. Where a more radical approach is taken and the course is being taught at an introductory level, we have recently published Negnevitsky's book. Karray and Silva will be suitable for the majority of courses which will be found at an advanced level. Karray and de Silva cover the problem of control and intelligent systems design using soft-computing techniques in an integrated manner. They present both theory and applications, including industrial applications, and the book contains numerous worked examples, problems and case studies. Covering the state-of-the-art in soft-computing techniques, the book gives the reader sufficient knowledge to tackle a wide range of complex systems for which traditional techniques are inadequate.
In recent years, intelligent control has emerged as one of the most active and fruitful areas of research and development. Until now, however, there has been no comprehensive text that explores the subject with focus on the design and analysis of biological and industrial applications. Intelligent Control Systems Using Soft Computing Methodologies does all that and more. Beginning with an overview of intelligent control methodologies, the contributors present the fundamentals of neural networks, supervised and unsupervised learning, and recurrent networks. They address various implementation issues, then explore design and verification of neural networks for a variety of applications, including medicine, biology, digital signal processing, object recognition, computer networking, desalination technology, and oil refinery and chemical processes. The focus then shifts to fuzzy logic, with a review of the fundamental and theoretical aspects, discussion of implementation issues, and examples of applications, including control of autonomous underwater vehicles, navigation of space vehicles, image processing, robotics, and energy management systems. The book concludes with the integration of genetic algorithms into the paradigm of soft computing methodologies, including several more industrial examples, implementation issues, and open problems and open problems related to intelligent control technology. Suitable as a textbook or a reference, Intelligent Control Systems explores recent advances in the field from both the theoretical and the practical viewpoints. It also integrates intelligent control design methodologies to give designers a set of flexible, robust controllers and provide students with a tool for solving the examples and exercises within the book.
Provides the basic concepts and engineering applications of soft computing. It includes the basics of soft computing, the use, applications, advantages and disadvantages of neural networks, the basic concepts of supervised learning and the advantages of unsupervised learning and genetic algorithms and fuzzy logic.
Combines the study of neural networks and fuzzy systems with symbolic artificial intelligence (AI) methods to build comprehensive AI systems. Describes major AI problems (pattern recognition, speech recognition, prediction, decision-making, game-playing) and provides illustrative examples. Includes applications in engineering, business and finance.
Neuro-Fuzzy and Soft Computing provides the first comprehensive treatment of the constituent methodologies underlying neuro-fuzzy and soft computing, an evolving branch of computational intelligence. The constituent methodologies include fuzzy set theory, neural networks, data clustering techniques, and several stochastic optimization methods that do not require gradient information. In particular, the authors put equal emphasis on theoretical aspects of covered methodologies, as well as empirical observations and verifications of various applications in practice. The book is well suited for use as a text for courses on computational intelligence and as a single reference source for this emerging field. To help readers understand the material the presentation includes more than 50 examples, more than 150 exercises, over 300 illustrations, and more than 150 Matlab scripts. In addition, Matlab is utilized to visualize the processes of fuzzy reasoning, neural-network learning, neuro-fuzzy integration and training, and gradient-free optimization (such as genetic algorithms, simulated annealing, random search, and downhill Simplex method). The presentation also makes use of SIMULINK for neuro-fuzzy control system simulations. All Matlab scripts used in the book are available on the free companion software disk that may be ordered by using the enclosed reply card. The book also contains an "Internet Resource Page" to point the reader to on-line neuro-fuzzy and soft computing home pages, publications, public-domain software, research institutes, news groups, etc. All the HTTP and FTP addresses are available as a bookmark file on the companion software disk.
The book covers the most essential and widely employed material in each area, particularly the material important for real-world applications. Our goal is not to cover every latest progress in the fields, nor to discuss every detail of various techniques that have been developed. New sections/subsections added in this edition are: Simulated Annealing (Section 3.7), Boltzmann Machines (Section 3.8) and Extended Fuzzy if-then Rules Tables (Sub-section 5.5.3). Also, numerous changes and typographical corrections have been made throughout the manuscript. The Preface to the first edition follows. General scope of the book Artificial intelligence (AI) as a field has undergone rapid growth in diversification and practicality. For the past few decades, the repertoire of AI techniques has evolved and expanded. Scores of newer fields have been added to the traditional symbolic AI. Symbolic AI covers areas such as knowledge-based systems, logical reasoning, symbolic machine learning, search techniques, and natural language processing. The newer fields include neural networks, genetic algorithms or evolutionary computing, fuzzy systems, rough set theory, and chaotic systems.
Provides an in-depth and even treatment of the three pillars of computational intelligence and how they relate to one another This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. The text focuses on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems. While other books in the three fields that comprise computational intelligence are written by specialists in one discipline, this book is co-written by current former Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems, a former Editor-in-Chief of IEEE Transactions on Fuzzy Systems, and the founding Editor-in-Chief of IEEE Transactions on Evolutionary Computation. The coverage across the three topics is both uniform and consistent in style and notation. Discusses single-layer and multilayer neural networks, radial-basis function networks, and recurrent neural networks Covers fuzzy set theory, fuzzy relations, fuzzy logic interference, fuzzy clustering and classification, fuzzy measures and fuzzy integrals Examines evolutionary optimization, evolutionary learning and problem solving, and collective intelligence Includes end-of-chapter practice problems that will help readers apply methods and techniques to real-world problems Fundamentals of Computational intelligence is written for advanced undergraduates, graduate students, and practitioners in electrical and computer engineering, computer science, and other engineering disciplines.
Market_Desc: · B. Tech (UG) students of CSE, IT, ECE· College Libraries· Research Scholars· Operational Research· Management Sector Special Features: Dr. S. N. Sivanandam has published 12 books· He has delivered around 150 special lectures of different specialization in Summer/Winter school and also in various Engineering colleges· He has guided and co guided 30 PhD research works and at present 9 PhD research scholars are working under him· The total number of technical publications in International/National Journals/Conferences is around 700· He has also received Certificate of Merit 2005-2006 for his paper from The Institution of Engineers (India)· He has chaired 7 International Conferences and 30 National Conferences. He is a member of various professional bodies like IE (India), ISTE, CSI, ACS and SSI. He is a technical advisor for various reputed industries and engineering institutions· His research areas include Modeling and Simulation, Neural Networks, Fuzzy Systems and Genetic Algorithm, Pattern Recognition, Multidimensional system analysis, Linear and Nonlinear control system, Signal and Image processing, Control System, Power system, Numerical methods, Parallel Computing, Data Mining and Database Security About The Book: This book is meant for a wide range of readers who wish to learn the basic concepts of soft computing. It can also be helpful for programmers, researchers and management experts who use soft computing techniques. The basic concepts of soft computing are dealt in detail with the relevant information and knowledge available for understanding the computing process. The various neural network concepts are explained with examples, highlighting the difference between various architectures. Fuzzy logic techniques have been clearly dealt with suitable examples. Genetic algorithm operators and the various classifications have been discussed in lucid manner, so that a beginner can understand the concepts with minimal effort.
This book presents best selected research papers presented at the 3rd International Conference on Cognitive Informatics and Soft Computing (CISC 2020), held at Balasore College of Engineering & Technology, Balasore, Odisha, India, from 12 to 13 December 2020. It highlights, in particular, innovative research in the fields of cognitive informatics, cognitive computing, computational intelligence, advanced computing, and hybrid intelligent models and applications. New algorithms and methods in a variety of fields are presented, together with solution-based approaches. The topics addressed include various theoretical aspects and applications of computer science, artificial intelligence, cybernetics, automation control theory, and software engineering.
This book is an excellent starting point for any curriculum in fuzzy systems fields such as computer science, mathematics, business/economics and engineering. It covers the basics leading to: fuzzy clustering, fuzzy pattern recognition, fuzzy database, fuzzy image processing, soft computing, fuzzy applications in operations research, fuzzy decision making, fuzzy rule based systems, fuzzy systems modeling, fuzzy mathematics. It is not a book designed for researchers - it is where you really learn the "basics" needed for any of the above-mentioned applications. It includes many figures and problem sets at the end of sections.