Download Free Fundamentals Of Short Range Fm Radar Book in PDF and EPUB Free Download. You can read online Fundamentals Of Short Range Fm Radar and write the review.

Here's a unique new resource that offers you a solid understanding of the fundamental theory, operation principles and applications of short-range frequency modulated continuous wave (FM CW) radar. You learn how to choose the structural scheme of short-range FM radar, and determine the optimal algorithm of useful signal processing necessary for ensuring the technical characteristic of radar. Moreover, this practical reference shows you how to ensure the minimum level of radar signal parasitic amplitude, calculate modulation signal distortion, and compensate for nonlinear distortion.
Here's a unique new resource that offers you a solid understanding of the fundamental theory, operation principles and applications of short-range frequency modulated continuous wave (FM CW) radar. You learn how to choose the structural scheme of short-range FM radar, and determine the optimal algorithm of useful signal processing necessary for ensuring the technical characteristic of radar. Moreover, this practical reference shows you how to ensure the minimum level of radar signal parasitic amplitude, calculate modulation signal distortion, and compensate for nonlinear distortion.
This book describes methods for making accurate radar measurements of short distances in applications where physical contact with materials is impractical. Sources of error are identified, and methods of reducing these errors are described. Practical test procedures for measuring instruments are also provided. Much of the book is dedicated to providing radar engineers with practical applications, detailing the conditions, equipment, and approach of experimental estimation. With the help of computer simulation, the achievable advantages in accuracy of radar range measurement with various approaches are revealed and quantitatively estimated. Readers are also provided with methods of random process theory and mathematical statistics, along with functional analysis and optimization.
Radar Expert, Esteemed Author Gregory L. Charvat on CNN and CBSAuthor Gregory L. Charvat appeared on CNN on March 17, 2014 to discuss whether Malaysia Airlines Flight 370 might have literally flown below the radar. He appeared again on CNN on March 20, 2014 to explain the basics of radar, and he explored the hope and limitations of the technology i
This exciting new resource covers various emerging applications of short range radars, including people counting and tracking, gesture sensing, human activity recognition, air-drawing, material classification, object classification, vital sensing by extracting features such as range-Doppler Images (RDI), range-cross range images, Doppler Spectrogram or directly feeding raw ADC data to the classifiers. The book also presents how deep learning architectures are replacing conventional radar signal processing pipelines enabling new applications and results. It describes how deep convolutional neural networks (DCNN), long-short term memory (LSTM), feedforward networks, regularization, optimization algorithms, connectionist This exciting new resource presents emerging applications of artificial intelligence and deep learning in short-range radar. The book covers applications ranging from industrial, consumer space to emerging automotive applications. The book presents several human-machine interface (HMI) applications, such as gesture recognition and sensing, human activity classification, air-writing, material classification, vital sensing, people sensing, people counting, people localization and in-cabin automotive occupancy and smart trunk opening. The underpinnings of deep learning are explored, outlining the history of neural networks and the optimization algorithms to train them. Modern deep convolutional neural network (DCNN), popular DCNN architectures for computer vision and their features are also introduced. The book presents other deep learning architectures, such as long-short term memory (LSTM), auto-encoders, variational auto-encoders (VAE), and generative adversarial networks (GAN). The application of human activity recognition as well as the application of air-writing using a network of short-range radars are outlined. This book demonstrates and highlights how deep learning is enabling several advanced industrial, consumer and in-cabin applications of short-range radars, which weren't otherwise possible. It illustrates various advanced applications, their respective challenges, and how they are been addressed using different deep learning architectures and algorithms.
This book gives you an in-depth look into the critical function of interference shielding for onboard radar of anti-aircraft missile systems. Intended for radar engineers and technicians specializing in anti-aircraft defense, the book reviews today’s military and geo-political threats, helps you understand the functional needs of the various radar and anti-missile systems to meet those threats, and synthesizes considerations for devising practical and effective protection against interferences that affect the homing heads of anti-aircraft guided missiles. Three problematic interferences are presented and discussed in detail: polarization interference; interference to the sidelobe of onboard antennas; and interference from two points in space, including interference reflected from the earth (water) surface. The book covers the basic principles of radiolocation, including monopulse radars, and gives insight into the fundamental functional units of anti-aircraft missiles and surface-to-air missile systems. The book presents guidance methods, systems of direction finding, problems on firing over the horizon, and questions of accuracy and resolution – all important for better addressing solutions of interference shielding. You will learn how to estimate the stability of target auto-tracking under conditions of cited interferences, and better assess existing limitations on firing over the horizon by a long-range antiaircraft system, as well as hypersonic targets and satellites. This is a unique and valuable resource for engineers and technicians who are involved in the design and development of anti-aircraft guided missile systems, with special emphasis on interference immunity and protection. It can also be used as a textbook in advanced radar technology coursework and seminars.
Mining is essential for extracting natural resources. However, it is costly, potentially dangerous if poorly managed, and is perceived by some to be an environmentally unfriendly process. This book provides a comprehensive overview of mining technology with case examples and research. Chapters discuss a diversity of topics, including sonic drilling, quality assessment of rock bolts, block cave mine ventilation, microwave radar surveillance, safety management of tailings, and monitoring radon gas in underground mines.
In two editions spanning more than a decade, The Electrical Engineering Handbook stands as the definitive reference to the multidisciplinary field of electrical engineering. Our knowledge continues to grow, and so does the Handbook. For the third edition, it has expanded into a set of six books carefully focused on a specialized area or field of study. Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar represents a concise yet definitive collection of key concepts, models, and equations in these areas, thoughtfully gathered for convenient access. Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar delves into the fields of electronics, integrated circuits, power electronics, optoelectronics, electromagnetics, light waves, and radar, supplying all of the basic information required for a deep understanding of each area. It also devotes a section to electrical effects and devices and explores the emerging fields of microlithography and power electronics. Articles include defining terms, references, and sources of further information. Encompassing the work of the world’s foremost experts in their respective specialties, Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar features the latest developments, the broadest scope of coverage, and new material in emerging areas.
The rapid development of advanced, arguably, intelligent sensors and their massive deployment provide a foundation for new paradigms to combat the challenges that arise in significant tasks such as positioning, tracking, navigation, and smart sensing in various environments. Relevant advances in artificial intelligence (AI) and machine learning (ML) are also finding rapid adoption by industry and fan the fire. Consequently, research on intelligent sensing systems and technologies has attracted considerable attention during the past decade, leading to a variety of effective applications related to intelligent transportation, autonomous vehicles, wearable computing, wireless sensor networks (WSN), and the internet of things (IoT). In particular, the sensors community has a great interest in novel, intelligent information fusion, and data mining methods coupling AI and ML for substantial performance enhancement, especially for the challenging scenarios that make traditional approaches inappropriate. This reprint book has collected 14 excellent papers that represent state-of-the-art achievements in the relevant topics and provides cutting-edge coverage of recent advances in sensor signal and data mining techniques, algorithms, and approaches, particularly applied for positioning, tracking, navigation, and smart sensing.
This highly-anticipated second edition of an Artech House classic covers several key radar analysis areas: the radar range equation, detection theory, ambiguity functions, waveforms, antennas, active arrays, receivers and signal processors, CFAR and chaff analysis. Readers will be able to predict the detection performance of a radar system using the radar range equation, its various parameters, matched filter theory, and Swerling target models. The performance of various signal processors, single pulse, pulsed Doppler, LFM, NLFM, and BPSK, are discussed, taking into account factors including MTI processing, integration gain, weighting loss and straddling loss. The details of radar analysis are covered from a mathematical perspective, with in-depth breakdowns of radar performance in the presence of clutter. Readers will be able to determine the nose temperature of a multi-channel receiver as it is used in active arrays. With the addition of three new chapters on moving target detectors, inverse synthetic aperture radar (ISAR) and constant false alarm rate (CFAR) and new MATLAB codes, this expanded second edition will appeal to the novice as well as the experienced practitioner.