Download Free Fundamentals Of Practical Mathematics Book in PDF and EPUB Free Download. You can read online Fundamentals Of Practical Mathematics and write the review.

Fundamentals of Mathematics is a work text that covers the traditional study in a modern prealgebra course, as well as the topics of estimation, elementary analytic geometry, and introductory algebra. It is intended for students who: have had previous courses in prealgebra wish to meet the prerequisites of higher level courses such as elementary algebra need to review fundamental mathematical concenpts and techniques This text will help the student devlop the insight and intuition necessary to master arithmetic techniques and manipulative skills. It was written with the following main objectives: to provide the student with an understandable and usable source of information to provide the student with the maximum oppurtinity to see that arithmetic concepts and techniques are logically based to instill in the student the understanding and intuitive skills necessary to know how and when to use particular arithmetic concepts in subsequent material cources and nonclassroom situations to give the students the ability to correctly interpret arithmetically obtained results We have tried to meet these objects by presenting material dynamically much the way an instructure might present the material visually in a classroom. (See the development of the concept of addition and subtraction of fractions in section 5.3 for examples) Intuition and understanding are some of the keys to creative thinking, we belive that the material presented in this text will help students realize that mathematics is a creative subject.
Practical Foundations collects the methods of construction of the objects of twentieth-century mathematics. Although it is mainly concerned with a framework essentially equivalent to intuitionistic Zermelo-Fraenkel logic, the book looks forward to more subtle bases in categorical type theory and the machine representation of mathematics. Each idea is illustrated by wide-ranging examples, and followed critically along its natural path, transcending disciplinary boundaries between universal algebra, type theory, category theory, set theory, sheaf theory, topology and programming. Students and teachers of computing, mathematics and philosophy will find this book both readable and of lasting value as a reference work.
Fundamentals of Technical Mathematics introduces key, applied mathematics for engineering technologists and technicians. Through a simple, engaging approach, the book reviews basic mathematics, including whole numbers, fractions, mixed numbers, decimals, percentages, ratios, and proportions. The book covers conversions to different units of measure (standard and/or metric) and other topics as required by specific businesses and industries, providing a go-to resource on the topic. Building on these foundations, it then explores concepts in arithmetic, introductory algebra, equations, inequalities, and modeling, graphs and functions, measurement, geometry, and trigonometry, all the while supporting these concepts with practical applications in a variety of technical and career vocations, including automotive, allied health, welding, plumbing, machine tool, carpentry, auto mechanics, HVAC, and many other fields. In addition, the book provides practical examples from a vast number of technologies. - Presents foundational math concepts in a concise, engaging way - Covers conversions to different units of measure (standard and/or metric) and other topics as required by specific businesses and industries - Reviews basic mathematics, including whole numbers, fractions, mixed numbers, decimals, percentages, ratios, and proportions - Connects concepts with recent applications in technology, engineering, manufacturing, and science - Includes many practice and review problems
This unique book presents a personal and global approach to teaching mathematics at university level. It is impressively broad in its scope, and thought-provoking in its advice. The author writes with a love of his subject and the benefit of a long and varied career. He compares and contrasts various educational systems and philosophies. Furthermore, by constantly drawing on his own experiences and those of his colleagues, he offers useful suggestions on how teachers can respond to the problems they face. This book will interest educationalists, policy advisers, administrators, lecturers, and instructors, of lecturers.
Based on course material used by the author at Yale University, this practical text addresses the widening gap found between the mathematics required for upper-level courses in the physical sciences and the knowledge of incoming students. This superb book offers students an excellent opportunity to strengthen their mathematical skills by solving various problems in differential calculus. By covering material in its simplest form, students can look forward to a smooth entry into any course in the physical sciences.
Fundamentals of Advanced Mathematics, Volume Three, begins with the study of differential and analytic infinite-dimensional manifolds, then progresses into fibered bundles, in particular, tangent and cotangent bundles. In addition, subjects covered include the tensor calculus on manifolds, differential and integral calculus on manifolds (general Stokes formula, integral curves and manifolds), an analysis on Lie groups, the Haar measure, the convolution of functions and distributions, and the harmonic analysis over a Lie group. Finally, the theory of connections is (linear connections, principal connections, and Cartan connections) covered, as is the calculus of variations in Lagrangian and Hamiltonian formulations. This volume is the prerequisite to the analytic and geometric study of nonlinear systems. - Includes sections on differential and analytic manifolds, vector bundles, tensors, Lie derivatives, applications to algebraic topology, and more - Presents an ideal prerequisite resource on the analytic and geometric study of nonlinear systems - Provides theory as well as practical information
This book presents basic optimization principles and gradient-based algorithms to a general audience, in a brief and easy-to-read form. It enables professionals to apply optimization theory to engineering, physics, chemistry, or business economics.
This textbook provides an engaging and motivational introduction to traditional topics in discrete mathematics, in a manner specifically designed to appeal to computer science students. The text empowers students to think critically, to be effective problem solvers, to integrate theory and practice, and to recognize the importance of abstraction. Clearly structured and interactive in nature, the book presents detailed walkthroughs of several algorithms, stimulating a conversation with the reader through informal commentary and provocative questions. Features: no university-level background in mathematics required; ideally structured for classroom-use and self-study, with modular chapters following ACM curriculum recommendations; describes mathematical processes in an algorithmic manner; contains examples and exercises throughout the text, and highlights the most important concepts in each section; selects examples that demonstrate a practical use for the concept in question.
Features the techniques, methods, and applications of calculus using real-world examples from business and economics as well as the life and social sciences An introduction to differential and integral calculus, Fundamentals of Calculus presents key topics suited for a variety of readers in fields ranging from entrepreneurship and economics to environmental and social sciences. Practical examples from a variety of subject areas are featured throughout each chapter and step-by-step explanations for the solutions are presented. Specific techniques are also applied to highlight important information in each section, including symbols interspersed throughout to further reader comprehension. In addition, the book illustrates the elements of finite calculus with the varied formulas for power, quotient, and product rules that correlate markedly with traditional calculus. Featuring calculus as the “mathematics of change,” each chapter concludes with a historical notes section. Fundamentals of Calculus chapter coverage includes: Linear Equations and Functions The Derivative Using the Derivative Exponents and Logarithms Differentiation Techniques Integral Calculus Integrations Techniques Functions of Several Variables Series and Summations Applications to Probability Supplemented with online instructional support materials, Fundamentals of Calculus is an ideal textbook for undergraduate students majoring in business, economics, biology, chemistry, and environmental science.