Download Free Fundamentals Of Polymer Physics And Molecular Biophysics Book in PDF and EPUB Free Download. You can read online Fundamentals Of Polymer Physics And Molecular Biophysics and write the review.

Macromolecules in solutions can be distinctly characterised by their transport behaviour in solution phase. The study of the transport processes includes diffusion coefficient, sedimentation coefficient, intrinsic viscosity and friction constant. The question arises as to how to explicitly characterise the macromolecules from the data of coefficients. This book answers this question in a systematic manner. It provides physical interpretation of the data obtained in macromolecular transport phenomena in a given system and also addresses some important issues and concepts related to biopolymers such as proteins and nucleic acids. The application of concepts like conformational properties and salient physicochemical features of protein and nucleic acids is also elucidated in the book. Based on the molecular structure, it provides the essential concepts which can be used to model and analyse the static and transport behaviour of polymers and biopolymers.
"Provides a physical interpretation of the data obtained in macromolecular transport phenomena in a given system and also addresses some important issues and concepts related to biopolymers such as proteins and nucleic acids"--
Introduction to Polymer Chemistry provides undergraduate students with a much-needed, well-rounded presentation of the principles and applications of natural, synthetic, inorganic, and organic polymers. With an emphasis on the environment and green chemistry and materials, this fourth edition continues to provide detailed coverage of natural and synthetic giant molecules, inorganic and organic polymers, elastomers, adhesives, coatings, fibers, plastics, blends, caulks, composites, and ceramics. Building on undergraduate work in foundational courses, the text fulfills the American Chemical Society Committee on Professional Training (ACS CPT) in-depth course requirement
Takes a materials science approach, correlating structure-property relationships with function across a broad range of biological materials.
Adopting a unique approach, this book provides a thorough, one-stop introduction to nanoscience and self-assembly of nanomaterials composed of such materials as metals, metal oxides, metal sulphides, polymers, and biopolymers. Clearly divided into three sections covering the main aspects of nanoscience, the first part deals with the basic principles of nanoscale science. Alongside essential approaches and forces, this section also covers thermodynamics, phase transitions, and applications to biological systems. The second and third parts then go on to provide a detailed description of the synthesis of inorganic and organic nanoparticles, respectively. With its interdisciplinary content of importance to many different branches of nanoscience, this is essential reading for material scientists, physicists, biophysical chemists, chemical engineers, and biotechnologists alike.
This book presents the fundamentals of molecular biophysics, and highlights the connection between molecules and biological phenomena, making it an important text across a variety of science disciplines. The topics covered in the book include: Phase transitions that occur in biosystems (protein crystallisation, globule-coil transition etc) Liquid crystallinity as an example of the delicate range of partially ordered phases found with biological molecules How molecules move and propel themselves at the cellular level The general features of self-assembly with examples from proteins The phase behaviour of DNA The physical toolbox presented within this text will form a basis for students to enter into a wide range of pure and applied bioengineering fields in medical, food and pharmaceutical areas.
Publisher Description
This book is dedicated to the multiple aspects, that is, biological, physical and computational of DNA and RNA molecules. These molecules, central to vital processes, have been experimentally studied by molecular biologists for five decades since the discovery of the structure of DNA by Watson and Crick in 1953. Recent progresses (e.g. use of DNA chips, manipulations at the single molecule level, availability of huge genomic databases...) have revealed an imperious need for theoretical modelling. Further progresses will clearly not be possible without an integrated understanding of all DNA and RNA aspects and studies. The book is intended to be a desktop reference for advanced graduate students or young researchers willing to acquire a broad interdisciplinary understanding of the multiple aspects of DNA and RNA. It is divided in three main sections: The first section comprises an introduction to biochemistry and biology of nucleic acids. The structure and function of DNA are reviewed in R. Lavery's chapter. The next contribution, by V. Fritsch and E. Westhof, concentrates on the folding properties of RNA molecules. The cellular processes involving these molecules are reviewed by J. Kadonaga, with special emphasis on the regulation of transcription. These chapters does not require any preliminary knowledge in the field (except that of elementary biology and chemistry). The second section covers the biophysics of DNA and RNA, starting with basics in polymer physics in the contribution by R. Khokhlov. A large space is then devoted to the presentation of recent experimental and theoretical progresses in the field of single molecule studies. T. Strick's contribution presents a detailed description of the various micro-manipulation techniques, and reviews recent experiments on the interactions between DNA and proteins (helicases, topoisomerases, ...). The theoretical modeling of single molecules is presented by J. Marko, with a special attention paid to the elastic and topological properties of DNA. Finally, advances in the understanding of electrophoresis, a technique of crucial importance in everyday molecular biology, are exposed in T. Duke's contribution. The third section presents provides an overview of the main computational approaches to integrate, analyse and simulate molecular and genetic networks. First, J. van Helden introduces a series of statistical and computational methods allowing the identification of short nucleic fragments putatively involved in the regulation of gene expression from sets of promoter sequences controlling co-expressed genes. Next, the chapter by Samsonova et al. connects this issue of transcriptional regulation with that of the control of cell differentiation and pattern formation during embryonic development. Finally, H. de Jong and D. Thieffry review a series of mathematical approaches to model the dynamical behaviour of complex genetic regulatory networks. This contribution includes brief descriptions and references to successful applications of these approaches, including the work of B. Novak, on the dynamical modelling of cell cycle in different model organisms, from yeast to mammals. . Provides a comprehensive overview of the structure and function of DNA and RNA at the interface between physics, biology and information science.
Polymer translocation occurs in many biological and biotechnological phenomena where electrically charged polymer molecules move through narrow spaces in crowded environments. Unraveling the rich phenomenology of polymer translocation requires a grasp of modern concepts of polymer physics and polyelectrolyte behavior. Polymer Translocation discusse
Nanobiophysics is a new branch of science that operates at the interface of physics, biology, chemistry, material science, nanotechnology, and medicine. This book is the first one devoted to nanobiophysics and introduces this field with a focus on some selected topics related to the physics of biomolecular nanosystems, including nucleosomal DNA and