Download Free Fundamentals Of Modern Vlsi Devices Book in PDF and EPUB Free Download. You can read online Fundamentals Of Modern Vlsi Devices and write the review.

Learn the basic properties and designs of modern VLSI devices, as well as the factors affecting performance, with this thoroughly updated second edition. The first edition has been widely adopted as a standard textbook in microelectronics in many major US universities and worldwide. The internationally renowned authors highlight the intricate interdependencies and subtle trade-offs between various practically important device parameters, and provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices. Equations and parameters provided are checked continuously against the reality of silicon data, making the book equally useful in practical transistor design and in the classroom. Every chapter has been updated to include the latest developments, such as MOSFET scale length theory, high-field transport model and SiGe-base bipolar devices.
Learn the basic properties and designs of modern VLSI devices, as well as the factors affecting performance, with this thoroughly updated second edition. The first edition has been widely adopted as a standard textbook in microelectronics in many major US universities and worldwide. The internationally renowned authors highlight the intricate interdependencies and subtle trade-offs between various practically important device parameters, and provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices. Equations and parameters provided are checked continuously against the reality of silicon data, making the book equally useful in practical transistor design and in the classroom. Every chapter has been updated to include the latest developments, such as MOSFET scale length theory, high-field transport model and SiGe-base bipolar devices.
Learn the basic properties and designs of modern VLSI devices, as well as the factors affecting performance, with this thoroughly updated second edition. The first edition has been widely adopted as a standard textbook in microelectronics in many major US universities and worldwide. The internationally renowned authors highlight the intricate interdependencies and subtle trade-offs between various practically important device parameters, and provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices. Equations and parameters provided are checked continuously against the reality of silicon data, making the book equally useful in practical transistor design and in the classroom. Every chapter has been updated to include the latest developments, such as MOSFET scale length theory, high-field transport model and SiGe-base bipolar devices.
Modern Semiconductor Devices for Integrated Circuits, First Edition introduces readers to the world of modern semiconductor devices with an emphasis on integrated circuit applications. KEY TOPICS Electrons and Holes in Semiconductors; Motion and Recombination of Electrons and Holes; Device Fabrication Technology; PN and Metal Semiconductor Junctions; MOS Capacitor; MOS Transistor; MOSFETs in ICs Scaling, Leakage, and Other Topics; Bipolar Transistor. MARKET Written by an experienced teacher, researcher, and expert in industry practices, this succinct and forward-looking text is appropriate for anyone interested in semiconductor devices for integrated curcuits, and serves as a suitable reference text for practicing engineers. "
Written in a concise, easy-to-read style, this text for senior undergraduate and graduate courses covers all key topics thoroughly. It is also a useful self-study guide for practising engineers who need a complete, up-to-date review of the subject. Key features: • Rigorous theoretical treatment combined with practical detail • A theoretical framework built up systematically from the Schrödinger Wave Equation and the Boltzmann Transport Equation • Covers MOSFETS, HBTs and HJFETS • Uses the PSP model for MOSFETS • Rigorous treatment of device capacitance • Describes the operation of modern, high-performance transistors and diodes • Evaluates the suitability of various transistor types and diodes for specific modern applications • Covers solar cells and LEDs and their potential impact on energy generation and reduction • Includes a chapter on nanotransistors to prepare students and professionals for the future • Provides results of detailed numerical simulations to compare with analytical solutions • End-of-chapter exercises • Online lecture slides for undergraduate and graduate courses
This book explains the physics and properties of multi-gate field-effect transistors (MuGFETs), how they are made and how circuit designers can use them to improve the performances of integrated circuits. It covers the emergence of quantum effects due to the reduced size of the devices and describes the evolution of the MOS transistor from classical structures to SOI (silicon-on-insulator) and then to MuGFETs.
The third edition of Hodges and Jackson’s Analysis and Design of Digital Integrated Circuits has been thoroughly revised and updated by a new co-author, Resve Saleh of the University of British Columbia. The new edition combines the approachability and concise nature of the Hodges and Jackson classic with a complete overhaul to bring the book into the 21st century. The new edition has replaced the emphasis on BiPolar with an emphasis on CMOS. The outdated MOS transistor model used throughout the book will be replaced with the now standard deep submicron model. The material on memory has been expanded and updated. As well the book now includes more on SPICE simulation and new problems that reflect recent technologies. The emphasis of the book is on design, but it does not neglect analysis and has as a goal to provide enough information so that a student can carry out analysis as well as be able to design a circuit. This book provides an excellent and balanced introduction to digital circuit design for both students and professionals.
A detailed, up-to-date guide to modern MOS structures, describing key tools, cutting-edge models, novel phenomena and challenges for future development. Abstract concepts are supported by practical examples and presented alongside recent theoretical and experimental results. An ideal companion for researchers, graduate students and industrial development engineers.
Chapter 1 -- Introduction -- Chapter 2 -- Fundamental Concepts -- Chapter 3 -- IP Switching -- Chapter 4 -- Tag Switching -- Chapter 5 -- MPLS Core Protocols -- Chapter 6 -- Quality of Service -- Chapter 7 -- ConstraintƯbased routing -- Chapter 8 -- Virtual Private Networks.
To surmount the continuous scaling challenges of MOSFET devices, FinFETs have emerged as the real alternative for use as the next generation device for IC fabrication technology. The objective of this book is to provide the basic theory and operating principles of FinFET devices and technology, an overview of FinFET device architecture and manufacturing processes, and detailed formulation of FinFET electrostatic and dynamic device characteristics for IC design and manufacturing. Thus, this book caters to practicing engineers transitioning to FinFET technology and prepares the next generation of device engineers and academic experts on mainstream device technology at the nanometer-nodes.