Download Free Fundamentals Of Materials Modelling For Metals Processing Technologies Theories And Applications Book in PDF and EPUB Free Download. You can read online Fundamentals Of Materials Modelling For Metals Processing Technologies Theories And Applications and write the review.

This book provides a comprehensive introduction to the unique theory developed over years of research on materials and process modelling and its application in metal forming technologies. It starts with the introduction of fundamental theories on the mechanics of materials, computational mechanics and the formulation of unified constitutive equations. Particular attention is paid to elastic-plastic formulations for cold metal forming and unified elastic-viscoplastic constitutive equations for warm/hot metals processing. Damage in metal forming and numerical techniques to solve and determine the unified constitutive equations are also detailed. Examples are given for the application of the unified theories to solve practical problems encountered in metal forming processes. This is particularly useful to predict microstructure evolution in warm/hot metal forming processes. Crystal plasticity theories and modelling techniques with their applications in micro-forming are also introduced in the book.The book is self-contained and unified in presentation. The explanations are highlighted to capture the interest of curious readers and complete enough to provide the necessary background material to further explore/develop new theories and applications.
Mechanics of Materials in Modern Manufacturing Methods and Processing Techniques provides a detailed overview of the latest developments in the mechanics of modern metal forming manufacturing. Focused on mechanics as opposed to process, it looks at the mechanical behavior of materials exposed to loading and environmental conditions related to modern manufacturing processes, covering deformation as well as damage and fracture processes. The book progresses from forming to machining and surface-treatment processes, and concludes with a series of chapters looking at recent and emerging technologies. Other topics covered include simulations in autofrettage processes, modeling strategies related to cutting simulations, residual stress caused by high thermomechanical gradients and pultrusion, as well as the mechanics of the curing process, forging, and cold spraying, among others. Some non-metallic materials, such as ceramics and composites, are covered as well. - Synthesizes the latest research in the mechanics of modern metal forming processes - Suggests theoretical models and numerical codes to predict mechanical responses - Covers mechanics of shot peening, pultrusion, hydroforming, magnetic pulse forming - Considers applicability of different materials and processes for optimum performance
Deformation Based Processing of Materials: Behavior, Performance, Modeling and Control focuses on deformation based process behaviors and process performance in terms of the quality of the needed shape, geometries, and the requested properties of the deformed products. In addition, modelling and simulation is covered to create an in-depth and epistemological understanding of the process. Other topics discussed include ways to efficiently reduce or avoid defects and effectively improve the quality of deformed parts. The book is ideal as a technical document, but also serves as scientific literature for engineers, scientists, academics, research students and management professionals involved in deformation based materials processing.
This book is a printed edition of the Special Issue "Crystal Indentation Hardness" that was published in Crystals
The book presents practical and theoretical works on superplasticity in metals and ceramics, on deformation mechanisms, on processes to obtain large ultrafine-grained structures, on advanced characterization techniques, and on hot deformation of advanced materials. Key papers focus on (1) processing of metallic alloys for achieving exceptional superplastic properties, (2) high-pressure sliding (HPS) processes, (3) in-situ neutron and synchrotron methods, and (4) ultra-severe plastic deformation. Keywords: Superplasticity, Superfunctionality, High-pressure Sliding, High-pressure Torsion, Precise Forming, Numerical Simulation, Aeronautical Parts, Near-unconstrained Superplastic Parts, Low-temperature Superplasticity, Friction Stir Processing, Microstructure Evolution, Corrosion Properties, Duplex Stainless Steel, Grain Boundary Sliding, Laminated Materials, Asymmetric Hot Rolling, Uniaxial Hot Pressing, Diffusion Bonding.
In a presentation that balances theory and practice, Drills: Science and Technology of Advanced Operations details the basic concepts, terminology, and essentials of drilling. The book addresses important issues in drilling operations, and provides help with the design of such operations. It debunks many old notions and beliefs while introducing scientifically and technically sound concepts with detailed explanations. The book presents a nine-step drilling tool failure analysis methodology that includes part autopsy and tool reconstruction procedure. A special feature of the book is the presentation of special mechanisms of carbide (e.g. cobalt leaching) and polycrystalline (PCD) tool wear and failure presented and correlated with the tool design, manufacturing, and implementation practice. The author also introduces the system approach to the design of the drilling system formulating the coherency law. Using this law as the guideline, he shows how to formulate the requirement to the components of such a system, pointing out that the drilling tool is the key component to be improved. Teaching how to achieve this improvement, the book provides the comprehensive scientific and engineering foundations for drilling tool design, manufacturing, and applications of high-performance tools. It includes detailed explanations of the design features, tool manufacturing and implementation practices, metrology of drilling and drilling tools, and the tool failure analysis. It gives you the information needed for proper manufacturing and selection of a tool material for any given application.
Metal Matrix Composites (MMC) are materials that can be tailored to achieve specific properties, influenced by fabrication techniques. "Metal Matrix Composites: Fabrication, Production and 3D Printing" cover various aspects of fabrication, production and new manufacturing techniques including research and development. It includes conventional fabrication techniques and methods required to synthesize micro/nano MMCs. Multivariate approach required to optimize production including development of complex geometries is explained as well. Features: Provides in-depth information on fabrication, production, and advanced manufacturing of Metal Matrix Composites (MMCs). Details about matrix, reinforcement, and application-oriented fabrication processes. Emphasizes on advance processing methods like metal 3D printing, additive and subtractive manufacturing techniques. Provides comprehensive record of fabrication development in MMCs. Focus on materials and application-based processing techniques. This book aims at graduate students, researchers and professionals in micro/nano science and technology, mechanical engineering, industrial engineering, metallurgy, and composites.
Geometry of Single-Point Turning Tools and Drills outlines clear objectives of cutting tool geometry selection and optimization, using multiple examples to provide a thorough explanation. It addresses several urgent problems that many present-day tool manufacturers, tool application specialists, and tool users, are facing. It is both a practical guide, offering useful, practical suggestions for the solution of common problems, and a useful reference on the most important aspects of cutting tool design, application, and troubleshooting practices. Covering emerging trends in cutting tool design, cutting tool geometry, machining regimes, and optimization of machining operations, Geometry of Single-Point Turning Tools and Drills is an indispensable source of information for tool designers, manufacturing engineers, research workers, and students.