Download Free Fundamentals Of Iii V Semiconductor Mosfets Book in PDF and EPUB Free Download. You can read online Fundamentals Of Iii V Semiconductor Mosfets and write the review.

Fundamentals of III-V Semiconductor MOSFETs presents the fundamentals and current status of research of compound semiconductor metal-oxide-semiconductor field-effect transistors (MOSFETs) that are envisioned as a future replacement of silicon in digital circuits. The material covered begins with a review of specific properties of III-V semiconductors and available technologies making them attractive to MOSFET technology, such as band-engineered heterostructures, effect of strain, nanoscale control during epitaxial growth. Due to the lack of thermodynamically stable native oxides on III-V's (such as SiO2 on Si), high-k oxides are the natural choice of dielectrics for III-V MOSFETs. The key challenge of the III-V MOSFET technology is a high-quality, thermodynamically stable gate dielectric that passivates the interface states, similar to SiO2 on Si. Several chapters give a detailed description of materials science and electronic behavior of various dielectrics and related interfaces, as well as physics of fabricated devices and MOSFET fabrication technologies. Topics also include recent progress and understanding of various materials systems; specific issues for electrical measurement of gate stacks and FETs with low and wide bandgap channels and high interface trap density; possible paths of integration of different semiconductor materials on Si platform.
GaAs processing has reached a mature stage. New semiconductor compounds are emerging that will dominate future materials and device research, although the processing techniques used for GaAs will still remain relevant. This book covers all aspects of the current state of the art of III-V processing, with emphasis on HBTs. It is aimed at practicing
During the last decade, there has been a great deal of interest in TFETs. To the best authors’ knowledge, no book on TFETs currently exists. The proposed book provides readers with fundamental understanding of the TFETs. It explains the interesting characteristics of the TFETs, pointing to their strengths and weaknesses, and describes the novel techniques that can be employed to overcome these weaknesses and improve their characteristics. Different tradeoffs that can be made in designing TFETs have also been highlighted. Further, the book provides simulation example files of TFETs that could be run using a commercial device simulator.
This book focusses on III-V high electron mobility transistors (HEMTs) including basic physics, material used, fabrications details, modeling, simulation, and other important aspects. It initiates by describing principle of operation, material systems and material technologies followed by description of the structure, I-V characteristics, modeling of DC and RF parameters of AlGaN/GaN HEMTs. The book also provides information about source/drain engineering, gate engineering and channel engineering techniques used to improve the DC-RF and breakdown performance of HEMTs. Finally, the book also highlights the importance of metal oxide semiconductor high electron mobility transistors (MOS-HEMT). Key Features Combines III-As/P/N HEMTs with reliability and current status in single volume Includes AC/DC modelling and (sub)millimeter wave devices with reliability analysis Covers all theoretical and experimental aspects of HEMTs Discusses AlGaN/GaN transistors Presents DC, RF and breakdown characteristics of HEMTs on various material systems using graphs and plots
This textbook gives a complete and fundamental introduction to the properties of III-V compound semiconductor devices, highlighting the theoretical and practical aspects of their device physics. Beginning with an introduction to the basics of semiconductor physics, it presents an overview of the physics and preparation of compound semiconductor materials, as well as a detailed look at the electrical and optical properties of compound semiconductor heterostructures. The book concludes with chapters dedicated to a number of heterostructure electronic and photonic devices, including the high-electron-mobility transistor, the heterojunction bipolar transistor, lasers, unipolar photonic devices, and integrated optoelectronic devices. Featuring chapter-end problems, suggested references for further reading, as well as clear, didactic schematics accompanied by six information-rich appendices, this textbook is ideal for graduate students in the areas of semiconductor physics or electrical engineering. In addition, up-to-date results from published research make this textbook especially well-suited as a self-study and reference guide for engineers and researchers in related industries.
The general aim of this book is to present selected chapters of the following types: chapters with more focus on modeling with some necessary simulation details and chapters with less focus on modeling but with more simulation details. This book contains eleven chapters divided into two sections: Modeling in Continuum Mechanics and Modeling in Electronics and Engineering. We hope our book entitled "Modeling and Simulation in Engineering - Selected Problems" will serve as a useful reference to students, scientists, and engineers.
Nanowires are an important sector of circuit design whose applications in very-large-scale integration design (VLSI) have huge impacts for bringing revolutionary advancements in nanoscale devices, circuits, and systems due to improved electronic properties of the nanowires. Nanowires are potential devices for VLSI circuits and system applications and are highly preferred in novel nanoscale devices due to their high mobility and high-driving capacity. Although the knowledge and resources for the fabrication of nanowires is currently limited, it is predicted that, with the advancement of technology, conventional fabrication flow can be used for nanoscale devices, specifically nanowires. Innovative Applications of Nanowires for Circuit Design provides relevant theoretical frameworks that include device physics, modeling, circuit design, and the latest developments in experimental fabrication in the field of nanotechnology. The book covers advanced modeling concepts of nanowires along with their role as a key enabler for innovation in GLSI devices, circuits, and systems. While highlighting topics such as design, simulation, types and applications, and performance analysis of nanowires, this book is ideally intended for engineers, practitioners, stakeholders, academicians, researchers, and students interested in electronics engineering, nanoscience, and nanotechnology.
New Advances in Semiconductors brings together contributions from important researchers around the world on semiconductor materials and their applications. It includes seven chapters in two sections: “Calculations and Simulations in Semiconductors” and “Semiconductor Materials.” The world will emerge different after the social and economic reorganizations caused by the COVID-19 pandemic and will be even more dependent on semiconductors than ever before. New Advances in Semiconductors is a book that brings together the contributions of important researchers around the world and is able to give an idea about the different characteristics of semiconductor materials and their applications. There is a section dedicated to theory, calculations and logic and another dedicated to the development and characterization of semiconductor materials of great future interest. I really hope that this book will help to spread knowledge about this research field to other researchers and students working in this area or even to those interested in starting their more advanced studies.
This book discusses reliability applications for power systems, renewable energy and smart grids and highlights trends in reliable communication, fault-tolerant systems, VLSI system design and embedded systems. Further, it includes chapters on software reliability and other computer engineering and software management-related disciplines, and also examines areas such as big data analytics and ubiquitous computing. Outlining novel, innovative concepts in applied areas of reliability in electrical, electronics and computer engineering disciplines, it is a valuable resource for researchers and practitioners of reliability theory in circuit-based engineering domains.
Bismuth-containing compounds comprise a relatively unexplored materials system that is expected to offer many unique and desirable optoelectronic, thermoelectric, and electronic properties for innovative device applications. This book serves as a platform for knowledge sharing and dissemination of the latest advances in novel areas of bismuth-containing compounds for materials and devices, and provides a comprehensive introduction to those new to this growing field. Coverage of bismides includes theoretical considerations, epitaxial growth, characterization, and materials properties (optical, electrical, and structural). In addition to the well-studied area of highly mismatched Bi-alloys, the book covers emerging topics such as topological insulators and ferroelectric materials. Built upon fundamental science, the book is intended to stimulate interest in developing new classes of semiconductor and thermoelectric materials that exploit the properties of Bismuth. Application areas for bismide materials include laser diodes for optical communications, DVD systems, light-emitting diodes, solar cells, transistors, quantum well lasers, and spintronic devices.