Download Free Fundamentals Of Geophysical Data Processing Whit Applications To Petroleum Prospecting Book in PDF and EPUB Free Download. You can read online Fundamentals Of Geophysical Data Processing Whit Applications To Petroleum Prospecting and write the review.

A concise introduction to geophysical data processing - many of the techniques associated with the general field of time series analysis - for advanced students, researchers, and professionals. The textbook begins with calculus before transitioning to discrete time series via the sampling theorem, aliasing, use of complex sinusoids, development of the discrete Fourier transform from the Fourier series, and an overview of linear digital filter types and descriptions. Aimed at senior undergraduate and graduate students in geophysics, environmental science, and engineering with no previous background in linear algebra, probability, or statistics, this textbook draws scenarios and datasets from across the world of geophysics, and shows how data processing techniques can be applied to real-world problems using detailed examples, illustrations, and exercises (using MATLAB or similar computing environment). Online supplementary resources include datasets for students, and a solutions manual and all the figures from the book as PowerPoints for course instructors.
Includes discussions of fundamental concepts, explained using heuristic descriptions of seismic modelling, deconvolution, depth migration, and tomography; processing and contouring pitfalls; and developments in time-lapse seismology, borehole geophysics, multicomponent seismology, and integrated reservoir characterization.
Introduction to Petroleum Seismology, second edition (SEG Investigations in Geophysics Series No. 12) provides the theoretical and practical foundation for tackling present and future challenges of petroleum seismology especially those related to seismic survey designs, seismic data acquisition, seismic and EM modeling, seismic imaging, microseismicity, and reservoir characterization and monitoring. All of the chapters from the first edition have been improved and/or expanded. In addition, twelve new chapters have been added. These new chapters expand topics which were only alluded to in the first edition: sparsity representation, sparsity and nonlinear optimization, near-simultaneous multiple-shooting acquisition and processing, nonuniform wavefield sampling, automated modeling, elastic-electromagnetic mathematical equivalences, and microseismicity in the context of hydraulic fracturing. Another major modification in this edition is that each chapter contains analytical problems as well as computational problems. These problems include MatLab codes, which may help readers improve their understanding of and intuition about these materials. The comprehensiveness of this book makes it a suitable text for undergraduate and graduate courses that target geophysicists and engineers as well as a guide and reference work for researchers and professionals in academia and in the petroleum industry.
Geophysics, the excellent exploration tool which traditionally uses the latest techniques has been in great demand, and has assisted by remarkable development of the methods which consist of gravimetry, electromagnetics and, the most important, seismic reflection. The book is presented like an encyclopedia. One may find an exact definition, illustrated with simple sketches, precise formulae & orders of magnitude & data which have so often been missing.
Information-Based Inversion and Processing with Applications examines different classical and modern aspects of geophysical data processing and inversion with emphasis on the processing of seismic records in applied seismology. Chapter 1 introduces basic concepts including: probability theory (expectation operator and ensemble statistics), elementary principles of parameter estimation, Fourier and z-transform essentials, and issues of orthogonality. In Chapter 2, the linear treatment of time series is provided. Particular attention is paid to Wold decomposition theorem and time series models (AR, MA, and ARMA) and their connection to seismic data analysis problems. Chapter 3 introduces concepts of Information theory and contains a synopsis of those topics that are used throughout the book. Examples are entropy, conditional entropy, Burg's maximum entropy spectral estimator, and mutual information. Chapter 4 provides a description of inverse problems first from a deterministic point of view, then from a probabilistic one. Chapter 5 deals with methods to improve the signal-to-noise ratio of seismic records. Concepts from previous chapters are put in practice for designing prediction error filters for noise attenuation and high-resolution Radon operators. Chapter 6 deals with the topic of deconvolution and the inversion of acoustic impedance. The first part discusses band-limited extrapolation assuming a known wavelet and considers the issue of wavelet estimation. The second part deals with sparse deconvolution using various 'entropy' type norms. Finally, Chapter 7 introduces recent topics of interest to the authors. The emphasis of this book is on applied seismology but researchers in the area of global seismology, and geophysical signal processing and inversion will find material that is relevant to the ubiquitous problem of estimating complex models from a limited number of noisy observations. - Non-conventional approaches to data processing and inversion are presented - Important problems in the area of seismic resolution enhancement are discussed - Contains research material that could inspire graduate students and their supervisors to undertake new research directions in applied seismology and geophysical signal processing
Classroom tested and the result of over 30 years of teaching and research, this textbook is an invaluable tool for undergraduate and graduate data analysis courses in environmental sciences and engineering. It is also a useful reference on modern digital data analysis for the extensive and growing community of Earth scientists and engineers. Basic Environmental Data Analysis for Scientists and Engineers introduces practical concepts of modern digital data analysis and graphics, including numerical/graphical calculus, measurement units and dimensional analysis, error propagation and statistics, and least squares data modeling. It emphasizes array-based or matrix inversion and spectral analysis using the fast Fourier transform (FFT) that dominates modern data analysis. Divided into two parts, this comprehensive hands-on textbook is excellent for exploring data analysis principles and practice using MATLAB®, Mathematica, Mathcad, and other modern equation solving software. Part I, for beginning undergraduate students, introduces the basic approaches for quantifying data variations in terms of environmental parameters. These approaches emphasize uses of the data array or matrix, which is the fundamental data and mathematical processing format of modern electronic computing. Part II, for advanced undergraduate and beginning graduate students, extends the inverse problem to least squares solutions involving more than two unknowns. Features: Offers a uniquely practical guide for making students proficient in modern electronic data analysis and graphics Includes topics that are not explained in any existing textbook on environmental data analysis Data analysis topics are very well organized into a two-semester course that meets general education curriculum requirements in science and engineering Facilitates learning by beginning each chapter with an ‘Overview’ section highlighting the topics covered, and ending it with a ‘Key Concepts’ section summarizing the main technical details that the reader should have acquired Indexes many numerical examples for ready access in the classroom or other venues serviced by electronic equation solvers like MATLAB®, Mathematica, Mathcad, etc. Offers supplemental exercises and materials to enhance understanding the principles and practice of modern data analysis
Intended for beginning interpreters, this book approaches seismic interpretation via synthesis of concepts and practical applications rather than through formal treatment of basic physics and geology. Based on the author's personal experience as a seismic interpreter, it is organised along the lines of notes from classes he designs and teaches.
Offers a well-rounded, mathematical approach to problems in signal interpretation using the latest time, frequency, and mixed-domain methods Equally useful as a reference, an up-to-date review, a learning tool, and a resource for signal analysis techniques Provides a gradual introduction to the mathematics so that the less mathematically adept reader will not be overwhelmed with instant hard analysis Covers Hilbert spaces, complex analysis, distributions, random signals, analog Fourier transforms, and more