Download Free Fundamentals Of Femtosecond Optics Book in PDF and EPUB Free Download. You can read online Fundamentals Of Femtosecond Optics and write the review.

Femtosecond optics involves the study of ultra-short pulses of light. Understanding the behaviour of these light pulses makes it possible to develop ultra-fast lasers with a wide range of applications in such areas as medical imaging, chemical analysis and micro-machining. Written by two leading experts in the field, this book reviews the theory of the interaction of femtosecond light pulses with matter, femtosecond lasers and laser systems, and the principles of femtosecond coherent spectroscopy of impurity amorphous media. - reviews the theory of the interaction of femtosecond light pulses with matter - Discusses femtosecond lasers and laser systems - Considers the principles of femtosecond coherent spectroscopy of impurity amorphous media
Ultrashort Laser Pulse Phenomena, Second Edition serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond ("faster than electronics") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic concepts and how they apply to the design of particular sources (dye lasers, solid state lasers, semiconductor lasers, fiber lasers, and sources based on frequency conversion). - Provides an easy to follow guide through "faster than electronics" probing and detection methods - THE manual on designing and constructing femtosecond systems and experiments - Discusses essential technology for applications in micro-machining, femtochemistry, and medical imaging
This is the second edition of this advanced textbook written for scientists who require further training in femtosecond science. Four years after pub- cation of the ?rst edition, femtosecond science has overcome new challenges and new application ?elds have become mature. It is necessary to take into account these new developments. Two main topics merged during this period that support important scienti?c activities: attosecond pulses are now gen- ated in the X-UV spectral domain, and coherent control of chemical events is now possible by tailoring the shape of femtosecond pulses. To update this advanced textbook, it was necessary to introduce these ?elds; two new ch- ters are in this second edition: “Coherent Control in Atoms, Molecules, and Solids”(Chap.11)and“AttosecondPulses”(Chap.12)withwell-documented references. Some changes, addenda, and new references are introduced in the ?rst edition’s ten original chapters to take into account new developments and updatethisadvancedtextbookwhichistheresultofascienti?cadventurethat started in 1991. At that time, the French Ministry of Education decided that, in view of the growing importance of ultrashort laser pulses for the national scienti?c community, a Femtosecond Centre should be created in France and devoted to the further education of scientists who use femtosecond pulses as a research tool and who are not specialists in lasers or even in optics.
Femtosecond laser micromachining of transparent material is a powerful and versatile technology. In fact, it can be applied to several materials. It is a maskless technology that allows rapid device prototyping, has intrinsic three-dimensional capabilities and can produce both photonic and microfluidic devices. For these reasons it is ideally suited for the fabrication of complex microsystems with unprecedented functionalities. The book is mainly focused on micromachining of transparent materials which, due to the nonlinear absorption mechanism of ultrashort pulses, allows unique three-dimensional capabilities and can be exploited for the fabrication of complex microsystems with unprecedented functionalities.This book presents an overview of the state of the art of this rapidly emerging topic with contributions from leading experts in the field, ranging from principles of nonlinear material modification to fabrication techniques and applications to photonics and optofluidics.
Attosecond optical pulse generation, along with the related process of high-order harmonic generation, is redefining ultrafast physics and chemistry. A practical understanding of attosecond optics requires significant background information and foundational theory to make full use of these cutting-edge lasers and advance the technology toward the n
Over the last few years, there has been a convergence between the fields of ultrafast science, nonlinear optics, optical frequency metrology, and precision laser spectroscopy. These fields have been developing largely independently since the birth of the laser, reaching remarkable levels of performance. On the ultrafast frontier, pulses of only a few cycles long have been produced, while in optical spectroscopy, the precision and resolution have reached one part in Although these two achievements appear to be completely disconnected, advances in nonlinear optics provided the essential link between them. The resulting convergence has enabled unprecedented advances in the control of the electric field of the pulses produced by femtosecond mode-locked lasers. The corresponding spectrum consists of a comb of sharp spectral lines with well-defined frequencies. These new techniques and capabilities are generally known as “femtosecond comb technology. ” They have had dramatic impact on the diverse fields of precision measurement and extreme nonlinear optical physics. The historical background for these developments is provided in the Foreword by two of the pioneers of laser spectroscopy, John Hall and Theodor Hänsch. Indeed the developments described in this book were foreshadowed by Hänsch’s early work in the 1970s when he used picosecond pulses to demonstrate the connection between the time and frequency domains in laser spectroscopy. This work complemented the advances in precision laser stabilization developed by Hall.
This book attempts to give a discussion of the physics and current and potential applications of the self-focusing of an intense femtosecond laser pulse in a tra- parent medium. Although self-focusing is an old subject of nonlinear optics, the consequence of self-focusing of intense femtosecond laser pulses is totally new and unexpected. Thus, new phenomena are observed, such as long range lam- tation, intensity clamping, white light laser pulse, self-spatial ltering, self-group phase locking, self-pulse compression, clean nonlinear uorescence, and so on. Long range propagation at high intensity, which is seemingly against the law of diffraction, is probably one of the most exciting consequences of this new sub- eld of nonlinear optics. Because the intensity inside the lament core is high, new ways of doing nonlinear optics inside the lament become possible. We call this lamentation nonlinear optics. We shall describe the generation of pulses at other wavelengths in the visible and ultraviolet (UV) starting from the near infrared pump pulse at 800 nm through four-wave-mixing and third harmonic generation, all in gases. Remotely sensing uorescence from the fragments of chemical and biological agents in all forms, gaseous, aerosol or solid, inside the laments in air is demonstrated in the labo- tory. The results will be shown in the last part of the book. Through analyzing the uorescence of gas molecules inside the lament, an unexpected physical process pertaining to the interaction of synchrotron radiation with molecules is observed.
From optical fundamentals to advanced applications, this comprehensive guide to micro-optics covers all the key areas for those who need an in-depth introduction to micro-optic devices, technologies, and applications. Topics covered range from basic optics, optical materials, refraction, and diffraction, to micro-mirrors, micro-lenses, diffractive optics, optoelectronics, and fabrication. Advanced topics, such as tunable and nano-optics, are also discussed. Real-world case studies and numerous worked examples are provided throughout, making complex concepts easier to follow, whilst an extensive bibliography provides a valuable resource for further study. With exercises provided at the end of each chapter to aid and test understanding, this is an ideal textbook for graduate and advanced undergraduate students taking courses in optics, photonics, micro-optics, microsystems, and MEMs. It is also a useful self-study guide for research engineers working on optics development.
This new edition of a classic in the field has been expanded and enriched with new content and updated references. The book covers the fundamental principles and surveys research of current thinkers and experts in the field with updated references of the key breakthroughs over the past decade and a half.
A comprehensive treatment of ultrafast optics This book fills the need for a thorough and detailed account of ultrafast optics. Written by one of the most preeminent researchers in the field, it sheds new light on technology that has already had a revolutionary impact on precision frequency metrology, high-speed electrical testing, biomedical imaging, and in revealing the initial steps in chemical reactions. Ultrafast Optics begins with a summary of ultrashort laser pulses and their practical applications in a range of real-world settings. Next, it reviews important background material, including an introduction to Fourier series and Fourier transforms, and goes on to cover: Principles of mode-locking Ultrafast pulse measurement methods Dispersion and dispersion compensation Ultrafast nonlinear optics: second order Ultrafast nonlinear optics: third order Mode-locking: selected advanced topics Manipulation of ultrashort pulses Ultrafast time-resolved spectroscopy Terahertz time-domain electromagnetics Professor Weiner's expertise and cutting-edge research result in a book that is destined to become a seminal text for engineers, researchers, and graduate students alike.