Download Free Fundamentals Of Event Continuous System Simulation Theory Book in PDF and EPUB Free Download. You can read online Fundamentals Of Event Continuous System Simulation Theory and write the review.

Effective computer analysis of event-continuous and hybrid systems is addressed. A multipurpose software architecture employing control of the integration step size with regard to the error, stability, and unilateral events is proposed. The problem of synchronization of continuous and discrete processes is dealt with. All new theoretical concepts are tested on heterogeneous applications to biological systems, large electric power systems, mechanical engineering and chemical kinetics problems.
Theory of Modeling and Simulation: Discrete Event & Iterative System Computational Foundations, Third Edition, continues the legacy of this authoritative and complete theoretical work. It is ideal for graduate and PhD students and working engineers interested in posing and solving problems using the tools of logico-mathematical modeling and computer simulation. Continuing its emphasis on the integration of discrete event and continuous modeling approaches, the work focuses light on DEVS and its potential to support the co-existence and interoperation of multiple formalisms in model components. New sections in this updated edition include discussions on important new extensions to theory, including chapter-length coverage of iterative system specification and DEVS and their fundamental importance, closure under coupling for iteratively specified systems, existence, uniqueness, non-deterministic conditions, and temporal progressiveness (legitimacy). - Presents a 40% revised and expanded new edition of this classic book with many important post-2000 extensions to core theory - Provides a streamlined introduction to Discrete Event System Specification (DEVS) formalism for modeling and simulation - Packages all the "need-to-know" information on DEVS formalism in one place - Expanded to include an online ancillary package, including numerous examples of theory and implementation in DEVS-based software, student solutions and instructors manual
Highly computer-oriented text, introducing numerical methods and algorithms along with the applications and conceptual tools. Includes homework problems, suggestions for research projects, and open-ended questions at the end of each chapter. Written by our successful author who also wrote Continuous System Modeling, a best-selling Springer book first published in the 1991 (sold about 1500 copies).
An insightful presentation of the key concepts, paradigms, and applications of modeling and simulation Modeling and simulation has become an integral part of research and development across many fields of study, having evolved from a tool to a discipline in less than two decades. Modeling and Simulation Fundamentals offers a comprehensive and authoritative treatment of the topic and includes definitions, paradigms, and applications to equip readers with the skills needed to work successfully as developers and users of modeling and simulation. Featuring contributions written by leading experts in the field, the book's fluid presentation builds from topic to topic and provides the foundation and theoretical underpinnings of modeling and simulation. First, an introduction to the topic is presented, including related terminology, examples of model development, and various domains of modeling and simulation. Subsequent chapters develop the necessary mathematical background needed to understand modeling and simulation topics, model types, and the importance of visualization. In addition, Monte Carlo simulation, continuous simulation, and discrete event simulation are thoroughly discussed, all of which are significant to a complete understanding of modeling and simulation. The book also features chapters that outline sophisticated methodologies, verification and validation, and the importance of interoperability. A related FTP site features color representations of the book's numerous figures. Modeling and Simulation Fundamentals encompasses a comprehensive study of the discipline and is an excellent book for modeling and simulation courses at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the fields of computational statistics, engineering, and computer science who use statistical modeling techniques.
During the 1990s the computing industry has witnessed many advances in mobile and enterprise computing. Many of these advances have been made possible by developments in the areas such as modeling, simulation, and artificial intelligence. Within the different areas of enterprise computing - such as manufacturing, health organisation, and commerce - the need for a disciplined, multifaceted, and unified approach to modeling and simulation has become essential. This new book provides a forum for scientists, academics, and professionals to present their latest research findings from the various fields: artificial intelligence, collaborative/distributed computing, modeling, and simulation.
Highly computer-oriented text, introducing numerical methods and algorithms along with the applications and conceptual tools. Includes homework problems, suggestions for research projects, and open-ended questions at the end of each chapter. Written by our successful author who also wrote Continuous System Modeling, a best-selling Springer book first published in the 1991 (sold about 1500 copies).
Modeling and simulation (M&S) based systems engineering (MSBSE) is the extension of MBSE, which enhances the value of MBSE and the ability of digitally evaluating and optimizing the whole system through comprehensive applications of M&S technologies. This book puts together the recent research in MSBSE, and hopefully this will provide the researchers and engineers with reference cases in M&S technologies to support the R&D of complex products and systems.
Complex artificial dynamic systems require advanced modeling techniques that can accommodate their asynchronous, concurrent, and highly non-linear nature. Discrete Event systems Specification (DEVS) provides a formal framework for hierarchical construction of discrete-event models in a modular manner, allowing for model re-use and reduced development time. Discrete Event Modeling and Simulation presents a practical approach focused on the creation of discrete-event applications. The book introduces the CD++ tool, an open-source framework that enables the simulation of discrete-event models. After setting up the basic theory of DEVS and Cell-DEVS, the author focuses on how to use the CD++ tool to define a variety of models in biology, physics, chemistry, and artificial systems. They also demonstrate how to map different modeling techniques, such as Finite State Machines and VHDL, to DEVS. The in-depth coverage elaborates on the creation of simulation software for DEVS models and the 3D visualization environments associated with these tools. A much-needed practical approach to creating discrete-event applications, this book offers world-class instruction on the field’s most useful modeling tools.
Commissioned by the Society for Modeling and Simulation International (SCS), this needed, useful new ‘Body of Knowledge’ (BoK) collects and organizes the common understanding of a wide collection of professionals and professional associations. Modeling and simulation (M&S) is a ubiquitous discipline that lays the computational foundation for real and virtual experimentation, clearly stating boundaries—and interactions—of systems, data, and representations. The field is well known, too, for its training support via simulations and simulators. Indeed, with computers increasingly influencing the activities of today’s world, M&S is the third pillar of scientific understanding, taking its place along with theory building and empirical observation. This valuable new handbook provides intellectual support for all disciplines in analysis, design and optimization. It contributes increasingly to the growing number of computational disciplines, addressing the broad variety of contributing as well as supported disciplines and application domains. Further, each of its sections provide numerous references for further information. Highly comprehensive, the BoK represents many viewpoints and facets, captured under such topics as: Mathematical and Systems Theory Foundations Simulation Formalisms and Paradigms Synergies with Systems Engineering and Artificial Intelligence Multidisciplinary Challenges Ethics and Philosophy Historical Perspectives Examining theoretical as well as practical challenges, this unique volume addresses the many facets of M&S for scholars, students, and practitioners. As such, it affords readers from all science, engineering, and arts disciplines a comprehensive and concise representation of concepts, terms, and activities needed to explain the M&S discipline. Tuncer Ören is Professor Emeritus at the University of Ottawa. Bernard Zeigler is Professor Emeritus at the University of Arizona. Andreas Tolk is Chief Scientist at The MITRE Corporation. All three editors are long-time members and Fellows of the Society for Modeling and Simulation International. Under the leadership of three SCS Fellows, Dr. Ören, University of Ottawa, Dr. Zeigler, The University of Arizona, and Dr. Tolk, The MITRE Corporation, more than 50 international scholars from 15 countries provided insights and experience to compile this initial M&S Body of Knowledge.