Download Free Fundamentals Of Capturing And Processing Drone Imagery And Data Book in PDF and EPUB Free Download. You can read online Fundamentals Of Capturing And Processing Drone Imagery And Data and write the review.

Unmanned aircraft systems (UAS) are rapidly emerging as flexible platforms for capturing imagery and other data across the sciences. Many colleges and universities are developing courses on UAS-based data acquisition. Fundamentals of Capturing and Processing Drone Imagery and Data is a comprehensive, introductory text on how to use unmanned aircraft systems for data capture and analysis. It provides best practices for planning data capture missions and hands-on learning modules geared toward UAS data collection, processing, and applications. FEATURES Lays out a step-by-step approach to identify relevant tools and methods for UAS data/image acquisition and processing Provides practical hands-on knowledge with visual interpretation, well-organized and designed for a typical 16-week UAS course offered on college and university campuses Suitable for all levels of readers and does not require prior knowledge of UAS, remote sensing, digital image processing, or geospatial analytics Includes real-world environmental applications along with data interpretations and software used, often nonproprietary Combines the expertise of a wide range of UAS researchers and practitioners across the geospatial sciences This book provides a general introduction to drones along with a series of hands-on exercises that students and researchers can engage with to learn to integrate drone data into real-world applications. No prior background in remote sensing, GIS, or drone knowledge is needed to use this book. Readers will learn to process different types of UAS imagery for applications (such as precision agriculture, forestry, urban landscapes) and apply this knowledge in environmental monitoring and land-use studies.
Key Methods in Geography is the perfect introductory companion, providing an overview of qualitative and quantitative methods for human and physical geography. The fourth edition of this essential and accessible primer covers the breadth of the discipline and offer critical and contextual perspectives on research methods. New coverage takes account of newer technologies and practice, and 9 new chapters bring greater diversity of positionality and perspective to the volume, including decolonial methods, predicting, visualizing and modelling climate and environmental change, and writing up research. Case study examples, summaries and exercises have been included in each chapter to enable learning. This is vital reading for any student undertaking a Geography Methods module as well as a valuable resource for any student embarking on independent research as part of their degree.
Explore a complex mechanical system where electronics and mechanical engineers work together as a cross-functional team. Using a working example, this book is a practical “how to” guide to designing a drone system. As system design becomes more and more complicated, systematic, and organized, there is an increasingly large gap in how system design happens in the industry versus what is taught in academia. While the system design basics and fundamentals mostly remain the same, the process, flow, considerations, and tools applied in industry are far different than that in academia. Designing Drone Systems takes you through the entire flow from system conception to design to production, bridging the knowledge gap between academia and the industry as you build your own drone systems. What You’ll LearnGain a high level understanding of drone systems Design a drone systems and elaborating the various aspects and considerations of design Review the principles of the industrial system design process/flow, and the guidelines for drone systems Look at the challenges, limitations, best practices, and patterns of system design Who This Book Is For Primarily for beginning or aspiring system design experts, recent graduates, and system design engineers. Teachers, trainers, and system design mentors can also benefit from this content.
Unmanned aerial vehicles (UAVs) have been widely adopted in the military world over the last decade and the success of these military applications is increasingly driving efforts to establish unmanned aircraft in non-military roles. Introduction to UAV Systems, 4th edition provides a comprehensive introduction to all of the elements of a complete Unmanned Aircraft System (UAS). It addresses the air vehicle, mission planning and control, several types of mission payloads, data links and how they interact with mission performance, and launch and recovery concepts. This book provides enough information to encourage a student to learn more; to provide a specialist with a basic appreciation of the technical issues that drive other parts of the system and interact with their specialty; or to help a program manager understand system-level tradeoffs and know what questions to ask. Key features: Comprehensive overview of all elements of a UAS and of how they interact. Introduces the underlying concepts of key subsystems. Emphasizes system-integration issues and how they relate to subsystem design choices. Practical discussion of issues informed by lessons learned in UAV programs. Introduction to UAV Systems, 4th edition is written both for newcomers to the subject and for experienced members of the UAV community who desire a comprehensive overview at the system level. As well as being a primary text for an introductory course on UAS or a supplementary text in a course that goes into more depth in one of the individual technologies involved in a UAS, this book is a useful overview for practicing engineers, researchers, managers, and consultants interested in UAV systems.
Introduction to Unmanned Aircraft Systems surveys the fundamentals of unmanned aircraft system (UAS) operations, from sensors, controls, and automation to regulations, safety procedures, and human factors. It is designed for the student or layperson and thus assumes no prior knowledge of UASs, engineering, or aeronautics. Dynamic and well-illustrated, the first edition of this popular primer was created in response to a need for a suitable university-level textbook on the subject. Fully updated and significantly expanded, this new Second Edition: Reflects the proliferation of technological capability, miniaturization, and demand for aerial intelligence in a post-9/11 world Presents the latest major commercial uses of UASs and unmanned aerial vehicles (UAVs) Enhances its coverage with greater depth and support for more advanced coursework Provides material appropriate for introductory UAS coursework in both aviation and aerospace engineering programs Introduction to Unmanned Aircraft Systems, Second Edition capitalizes on the expertise of contributing authors to instill a practical, up-to-date understanding of what it takes to safely operate UASs in the National Airspace System (NAS). Complete with end-of-chapter discussion questions, this book makes an ideal textbook for a first course in UAS operations.
This book aims to further build capacity in the conservation community to use drones for conservation and inspire others to adapt emerging technologies for conservation.
With the widespread availability of satellite and aircraft remote sensing image data in digital form, and the ready access most remote sensing practitioners have to computing systems for image interpretation, there is a need to draw together the range of digital image processing procedures and methodologies commonly used in this field into a single treatment. It is the intention of this book to provide such a function, at a level meaningful to the non-specialist digital image analyst, but in sufficient detail that algorithm limitations, alternative procedures and current trends can be appreciated. Often the applications specialist in remote sensing wishing to make use of digital processing procedures has had to depend upon either the mathematically detailed treatments of image processing found in the electrical engineering and computer science literature, or the sometimes necessarily superficial treatments given in general texts on remote sensing. This book seeks to redress that situation. Both image enhancement and classification techniques are covered making the material relevant in those applications in which photointerpretation is used for information extraction and in those wherein information is obtained by classification.
Inexpensive consumer drones that offer ease of flight and high-quality photography and videography have exploded on the market recently, creating what can only be described as drone mania amongst a diverse range of potential users. Because camera-carrying drones still really only exist on the edge between hobby and the mainstream, there is still a lot of confusion about what these small drones are capable of doing. The decision to purchase one is just the first in a long stream of things a new owner must think about. Aerial Photography and Videography Using Drones is designed to help you make the most of the opportunities these nimble, affordable, and accessible flying machines have created for aerial photography and videography. Within this definitive guide, you’ll learn about the following: • the current state of camera drone equipment • how to become a competent drone operator • tips for getting the best aerial still images and videos • stories from aerial photographers and videographers from around the world • the current regulatory state for drone usage in the U.S. • techniques demonstrated in several videos you can download from peachpit.com, along with pre-flight checklists and worksheets for flight training.
There is increasing interest in the potential of UAV (Unmanned Aerial Vehicle) and MAV (Micro Air Vehicle) technology and their wide ranging applications including defence missions, reconnaissance and surveillance, border patrol, disaster zone assessment and atmospheric research. High investment levels from the military sector globally is driving research and development and increasing the viability of autonomous platforms as replacements for the remotely piloted vehicles more commonly in use. UAV/UAS pose a number of new challenges, with the autonomy and in particular collision avoidance, detect and avoid, or sense and avoid, as the most challenging one, involving both regulatory and technical issues. Sense and Avoid in UAS: Research and Applications covers the problem of detect, sense and avoid in UAS (Unmanned Aircraft Systems) in depth and combines the theoretical and application results by leading academics and researchers from industry and academia. Key features: Presents a holistic view of the sense and avoid problem in the wider application of autonomous systems Includes information on human factors, regulatory issues and navigation, control, aerodynamics and physics aspects of the sense and avoid problem in UAS Provides professional, scientific and reliable content that is easy to understand, and Includes contributions from leading engineers and researchers in the field Sense and Avoid in UAS: Research and Applications is an invaluable source of original and specialised information. It acts as a reference manual for practising engineers and advanced theoretical researchers and also forms a useful resource for younger engineers and postgraduate students. With its credible sources and thorough review process, Sense and Avoid in UAS: Research and Applications provides a reliable source of information in an area that is fast expanding but scarcely covered.