Download Free Fundamentals Of Atmospheric Radiation Book in PDF and EPUB Free Download. You can read online Fundamentals Of Atmospheric Radiation and write the review.

Meeting the need for teaching material suitable for students of atmospheric science and courses on atmospheric radiation, this textbook covers the fundamentals of emission, absorption, and scattering of electromagnetic radiation from ultraviolet to infrared and beyond. Much of the contents applies to planetary atmosphere, with graded discussions providing a thorough treatment of subjects, including single scattering by particles at different levels of complexity. The discussion of the simple multiple scattering theory introduces concepts in more advanced theories, such that the more complicated two-stream theory allows readers to progress beyond the pile-of-plates theory. The authors are physicists teaching at the largest meteorology department in the US at Penn State. The problems given in the text come from students, colleagues, and correspondents, and the figures designed especially for this book facilitate comprehension. Ideal for advanced undergraduate and graduate students of atmospheric science. * Free solutions manual available for lecturers at www.wiley-vch.de/supplements/
Fundamentals of radiation for atmospheric applications -- Solar radiation at the top of the atmosphere -- Absorption and scattering of solar radiation in the atmosphere -- Thermal infrared radiation transfer in the atmosphere -- Light scattering by atmospheric particulates -- Principles of radiative transfer in planetary atmospheres -- Application of radiative transfer principles to remote sensing -- Radiation and climate.
An Introduction to Atmospheric Radiation
Publisher Description
The sun radiates a tremendous amount of energy, called solar energy or solar radiation, which is the main natural source of energy on the Earth, by far. Because solar radiation is the almost unique supplier of energy to the Earth, it has a primary influence on life and activities on the Earth. The climate is a first example, but there are many others, such as plant growth or human health, or even the design of buildings, the production of energy, notably electrical and thermal, or even aging materials. This book aims to provide simple answers to anyone who has questions about solar radiation. Its ambition is to help by presenting the fundamental elements of the solar radiation received on the ground. The book includes many examples and numerous illustrations, as well as some simple but fairly precise equations to calculate the various elements covered and to reproduce the figures and graphs. The first of the three parts of this book is devoted to the relative geometry between the direction of the sun and an observer on the ground as well as to the solar radiation emitted by the sun and received at the top of the atmosphere. The orbit of the Earth around the sun and the solar declination are described. The concept of time is introduced which is closely linked to the solar cycle and the rotation of the Earth on itself. Equations are given to calculate the solar radiation received on a horizontal or inclined surface located at the top of the atmosphere. The spectral distribution of the extraterrestrial solar radiation is described. The second part of this book addresses how the solar radiation incident at the top of the atmosphere is attenuated and modified in its downward path to the ground. The reflection of the radiation by the ground is presented. The solar radiation received on the ground by a horizontal or inclined collector plane, such as a natural slope or a rooftop, is discussed, as well as its spectral distribution. The variability of the radiation is addressed in relation to the properties of solar radiation estimated from the measurements. The third part deals with direct or indirect measurements of the solar radiation received on the ground over a given integration time (minute, hour, day, or month), whether for total radiation or radiation in a spectral range such as ultraviolet (UV), or daylight, or photosynthetically active radiation (PAR). It also explains how to check the plausibility of the measurements. Fundamentals of Solar Radiation will be a valuable resource to all professionals, engineers, researchers, students, and other practitioners that seek an understanding of solar radiation.
This book sets out to give a rigorous mathematical description of the greenhouse effect through the theory of infrared atmospheric emission. In contrast to traditional climatological analysis, this approach eschews empirical relations in favour of a strict thermodynamical derivation, based on data from NASA and from the HITRAN spectroscopy database. The results highlight new aspects of the role of clouds in the greenhouse effect.
Fundamentals of Atmospheric Physics emphasizes the interrelationships of physical and dynamical meteorology. The text unifies four major subject areas: atmospheric thermodynamics, hydrostatic equilibrium and stability, atmospheric radiation and clouds, and atmospheric dynamics. These fundamental areas serve as cornerstones of modern atmospheric research on environmental issues like global change and ozone depletion. Physical concepts underlying these subject areas are developed from first principles, providing a self-contained text for students and scholars from diverse backgrounds. The presentation is Lagrangian (single-body problems) in perspective, with a balance of theory and application. Each chapter includes detailed and extensive problems; selected answers are provided, as are appendices of various constants. The text requires a thorough foundation in calculus. Presents a comprehensive introduction to atmospheric thermodynamics, hydrostatics, radiation and clouds, and dynamics Develops concepts from first principles, providing a self-contained volume for readers from diverse backgrounds Emphasizes the interaction of physical processes shaping global problems of atmospheric energetics, transport, and chemistry Provides a balance of theory and applications, with examples drawn from a wide range of phenomena figuring in global atmospheric research Extensively illustrated with global satellite imagery and analyses and photographs of laboratory simulations Exercises apply to a wide range of topical problems
Provides a foundation of the theoretical and practical aspects of radiative transfer, for the atmospheric, oceanic and environmental sciences.
Thermal Physics of the Atmosphere offers a concise and thorough introduction on how basic thermodynamics naturally leads on to advanced topics in atmospheric physics. The book starts by covering the basics of thermodynamics and its applications in atmospheric science. The later chapters describe major applications, specific to more specialized areas of atmospheric physics, including vertical structure and stability, cloud formation, and radiative processes. The book concludes with a discussion of non-equilibrium thermodynamics as applied to the atmosphere. This book provides a thorough introduction and invaluable grounding for specialised literature on the subject. Introduces a wide range of areas associated with atmospheric physics Starts from basic level thermal physics Ideally suited for readers with a general physics background Self-assessment questions included for each chapter Supplementary website to accompany the book
Atmospheric Science, Second Edition, is the long-awaited update of the classic atmospheric science text, which helped define the field nearly 30 years ago and has served as the cornerstone for most university curricula. Now students and professionals alike can use this updated classic to understand atmospheric phenomena in the context of the latest discoveries, and prepare themselves for more advanced study and real-life problem solving. This latest edition of Atmospheric Science, has been revamped in terms of content and appearance. It contains new chapters on atmospheric chemistry, the Earth system, the atmospheric boundary layer, and climate, as well as enhanced treatment of atmospheric dynamics, radiative transfer, severe storms, and global warming. The authors illustrate concepts with full-color, state-of-the-art imagery and cover a vast amount of new information in the field. Extensive numerical and qualitative exercises help students apply basic physical principles to atmospheric problems. There are also biographical footnotes summarizing the work of key scientists, along with a student companion website that hosts climate data; answers to quantitative exercises; full solutions to selected exercises; skew-T log p chart; related links, appendices; and more. The instructor website features: instructor’s guide; solutions to quantitative exercises; electronic figures from the book; plus supplementary images for use in classroom presentations. Meteorology students at both advanced undergraduate and graduate levels will find this book extremely useful. Full-color satellite imagery and cloud photographs illustrate principles throughout Extensive numerical and qualitative exercises emphasize the application of basic physical principles to problems in the atmospheric sciences Biographical footnotes summarize the lives and work of scientists mentioned in the text, and provide students with a sense of the long history of meteorology Companion website encourages more advanced exploration of text topics: supplementary information, images, and bonus exercises