Download Free Fundamentals And Applications Of Magnetic Materials Book in PDF and EPUB Free Download. You can read online Fundamentals And Applications Of Magnetic Materials and write the review.

Students and researchers looking for a comprehensive textbook on magnetism, magnetic materials and related applications will find in this book an excellent explanation of the field. Chapters progress logically from the physics of magnetism, to magnetic phenomena in materials, to size and dimensionality effects, to applications. Beginning with a description of magnetic phenomena and measurements on a macroscopic scale, the book then presents discussions of intrinsic and phenomenological concepts of magnetism such as electronic magnetic moments and classical, quantum, and band theories of magnetic behavior. It then covers ordered magnetic materials (emphasizing their structure-sensitive properties) and magnetic phenomena, including magnetic anisotropy, magnetostriction, and magnetic domain structures and dynamics. What follows is a comprehensive description of imaging methods to resolve magnetic microstructures (domains) along with an introduction to micromagnetic modeling. The book then explores in detail size (small particles) and dimensionality (surface and interfaces) effects — the underpinnings of nanoscience and nanotechnology that are brought into sharp focus by magnetism. The hallmark of modern science is its interdisciplinarity, and the second half of the book offers interdisciplinary discussions of information technology, magnetoelectronics and the future of biomedicine via recent developments in magnetism. Modern materials with tailored properties require careful synthetic and characterization strategies. The book also includes relevant details of the chemical synthesis of small particles and the physical deposition of ultra thin films. In addition, the book presents details of state-of-the-art characterization methods and summaries of representative families of materials, including tables of properties. CGS equivalents (to SI) are included.
Magnetic Materials is an excellent introduction to the basics of magnetism, magnetic materials and their applications in modern device technologies. Retaining the concise style of the original, this edition has been thoroughly revised to address significant developments in the field, including the improved understanding of basic magnetic phenomena, new classes of materials, and changes to device paradigms. With homework problems, solutions to selected problems and a detailed list of references, Magnetic Materials continues to be the ideal book for a one-semester course and as a self-study guide for researchers new to the field. New to this edition: • Entirely new chapters on Exchange Bias Coupling, Multiferroic and Magnetoelectric Materials, Magnetic Insulators • Revised throughout, with substantial updates to the chapters on Magnetic Recording and Magnetic Semiconductors, incorporating the latest advances in the field • New example problems with worked solutions
This book presents current research on advanced magnetic materials and multifunctional composites. Recent advances in technology and engineering have resulted from the development of advanced magnetic materials with improved functional magnetic and magneto-transport properties. Certain industrial sectors, such as magnetic sensors, microelectronics, and security, demand cost-effective materials with reduced dimensionality and desirable magnetic properties such as enhanced magnetic softness, giant magnetic field sensitivity, and large magnetocaloric effect. Expert chapters present the most up-to-date information on the fabrication process, processing, tailoring of properties, and applications of different families of modern functional materials for advanced smart applications. Topics covered include novel magnetic materials and applications; amorphous and nanocrystalline magnetic materials and applications; hard magnetic materials; magnetic shape memory alloys; and magnetic oxides. The book's highly interdisciplinary and forward-looking approach will benefit the scientific community, particularly researchers and advanced graduate students working in the field of advanced magnetic materials, composites, and high-performance sensor and microwave devices.
This book covers the fundamentals of magnetism and the basic theories and applications of conventional magnetic materials. In addition there is extensive discussion of novel magnetic phenomena and their modern device applications. The book starts with a review of elementary magnetostatics and magnetic materials, followed by a discussion of the atomic origins of magnetism. The properties and applications of ferro-, ferri, para-, dia- and antiferro-magnets are surveyed, and the basic theories that describe them are outlined. The final part of the book focuses on novel magnetic phenomena, and on magnetic materials in modern technological applications. Based on a course given by the author in the Materials Department at UC Santa Barbara, the book is targeted at graduate and advanced undergraduate students as well as researchers new to the field. Highly illustrated, containing numerous homework problems and worked solutions, this book is ideal for a one semester course in magnetic materials.
At a practical level, this compendium reviews the basics of soft and hard magnetic materials, discusses the advantages of the different processing routes for the exploitation of the magnetic properties and hence assists in proper, fail-safe and economic application of magnetic materials. Essential guidelines and formulas for the calculation of the magnetic and electrical properties, temperature and long-term stability of permanent magnets, of inductive components and magnetic shielding are compiled. Selected fields of application and case studies illustrate the large diversity of technical applications. Application engineers will appreciate the comprehensive compilation of the properties and detailed characteristic curves of modern soft and hard magnetic materials. Materials scientists will enjoy the presentation of the different processing routes and their impact on the magnetic properties and students will profit from the survey from the basics of magnetism down to the applications in inductive components, magnetic shielding and magnet assemblies.
An essential textbook for graduate courses on magnetism and an important source of practical reference data.
Introduction to Magnetic Materials, 2nd Edition covers the basics of magnetic quantities, magnetic devices, and materials used in practice. While retaining much of the original, this revision now covers SQUID and alternating gradient magnetometers, magnetic force microscope, Kerr effect, amorphous alloys, rare-earth magnets, SI Units alongside cgs units, and other up-to-date topics. In addition, the authors have added an entirely new chapter on information materials. The text presents materials at the practical rather than theoretical level, allowing for a physical, quantitative, measurement-based understanding of magnetism among readers, be they professional engineers or graduate-level students.
This book begins with a phenomenological treatment of magnetism, introducing magnetic effects at the atomic, mesoscopic and macroscopic levels. This is followed by a section on atomic aspects of magnetism, and finally a presentation of magneto-caloric, magneto-elastic, magneto-optical and magneto-transport coupling effects.
Magnetic Nanoparticle-Based Hybrid Materials: Fundamentals and Applications introduces the principles, properties, and emerging applications of this important materials system. The hybridization of magnetic nanoparticles with metals, metal oxides and semiconducting nanoparticles may result in superior properties. The book reviews the most relevant hybrid materials, their mechanisms and properties. Then, the book focuses on the rational design, controlled synthesis, advanced characterizations and in-depth understanding of structure-property relationships. The last part addresses the promising applications of hybrid nanomaterials in the real world such as in the environment, energy, medicine fields. Magnetic Nanoparticle-Based Hybrid Materials: Fundamentals and Applications comprehensively reviews both the theoretical and experimental approaches used to rapidly advance nanomaterials that could result in new technologies that impact day-to-day life and society in key areas such as health and the environment. It is suitable for researchers and practitioners who are materials scientists and engineers, chemists or physicists in academia and R&D. Provides in-depth information on the basic principles of magnetic nanoparticles-based hybrid materials such as synthesis, characterization, properties, and magnon interactions Discusses the most relevant hybrid materials systems including integration of metals, metal oxides, polymers, carbon and more Addresses the emerging applications in medicine, the environment, energy, sensing, and computing enabled by magnetic nanoparticles-based hybrid materials
Modern Permanent Magnets provides an update on the status and recent technical developments that have occurred in the various families of permanent magnets produced today. The book gives an overview of the key advances of permanent magnet materials that have occurred in the last twenty years. Sections cover the history of permanent magnets, their fundamental properties, an overview of the important families of permanent magnets, coatings used to protect permanent magnets and the various tests used to confirm specifications are discussed. Finally, the major applications for each family of permanent magnets and the size of the market is provided. The book also includes an Appendix that provides a Glossary of Magnetic Terms to assist the readers in better understanding the technical terms used in other chapters. This book is an ideal resource for materials scientists and engineers working in academia and industry R&D. Provides an in-depth overview of all of the important families of permanent magnets produced today Includes background information on the fundamental properties of permanent magnets, major applications of each family of permanent magnets, and advances in coatings and coating technology Reviews the fundamentals of permanent magnet design