Download Free Fundamental Problems Of Gauge Field Theory Book in PDF and EPUB Free Download. You can read online Fundamental Problems Of Gauge Field Theory and write the review.

Acquaints readers with the main concepts and literature of elementary particle physics and quantum field theory. In particular, the book is concerned with the elaboration of gauge field theories in nuclear physics; the possibility of creating fundamental new states of matter such as an extended quark-gluon plasma in ultra-relativistic heavy ion collisions; and the relation of gauge theories to the creation and evolution of the universe. Divided into three parts, it opens with an introduction to the general principles of relativistic quantum field theory followed by the essential ingredients of gauge fields for weak and electromagnetic interactions, quantum chromodynamics and strong interactions. The third part is concerned with the interface between modern elementary particle physics and "applied disciplines" such as nuclear physics, astrophysics and cosmology. Includes references and numerous exercises.
The sixth Ettore Majorana International School of Mathematical Physics was held at the Centro della Cultura Scientifica Erice, Sicily, 1-14 July 1985. The present volume collects lecture notes on the ses sion which was devoted to Fundamental Problems of Gauge Field Theory. The School was a NATO Advanced Study Institute sponsored by the Italian Ministry of Public Education, the Italian Ministry of Scientific and Technological Research and the Regional Sicilian Government. As a result of the experimental and theoretical developments of the last two decades, gauge field theory, in one form or another, now pro vides the standard language for the description of Nature; QCD and the standard model of the electroweak interactions illustrate this point. It is a basic task of mathematical physics to provide a solid foundation for these developments by putting the theory in a physically transparent and mathematically rigorous form. The lectures and seminars of the school concentrated on the many unsolved problems which arise here, and on the general ideas and methods which have been proposed for their solution. In particular, we mention the use of rigorous renormalization group methods to obtain control over the continuum limit of lattice gauge field theories, the explora tion of the extraordinary enigmatic connections between Kac-Moody Virasoro algebras and string theory, and the systematic use of the theory of local algebras and indefinite metric spaces to classify the charged C* states in gauge field theories.
INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.
This book introduces a rapidly growing new research area — the study of dynamical properties of elementary fields. The methods used in this field range from algebraic topology to parallel computer programming. The main aim of this research is to understand the behavior of elementary particles and fields under extreme circumstances, first of all at high temperature and energy density generated in the largest accelerators of the world and supposed to be present in the early evolution of our Universe shortly after the Big Bang.In particular, chaos is rediscovered in a new appearance in these studies: in gauge theories the well-known divergence of initially adjacent phase space trajectories leads over into a quasi-thermal distribution of energy with a saturated average distance of different field configurations. This particular behavior is due to the compactness of the gauge group.Generally this book is divided into two main parts: the first part mainly deals with the “classical” discovery of chaos in gauge field theory while the second part presents methods and research achievements in recent years. One chapter is devoted entirely to the presentation and discussion of computational problems. The major theme, returning again and again throughout the book, is of course the phenomenon with a thousand faces — chaos itself.This book is intended to be a research book which introduces the reader to a new research field, presenting the basic new ideas in detail but just briefly touching on the problems of other related fields, like perturbative or lattice gauge theory, or dissipative chaos. The terminology of these related fields are, however, used.Exercises are also included in this book. They deepen the reader's understanding of special issues and at the same time offer more information on related problems. For the convenience of the fast reader, solutions are presented right after the problems.
Based on a highly regarded lecture course at Moscow State University, this is a clear and systematic introduction to gauge field theory. It is unique in providing the means to master gauge field theory prior to the advanced study of quantum mechanics. Though gauge field theory is typically included in courses on quantum field theory, many of its ideas and results can be understood at the classical or semi-classical level. Accordingly, this book is organized so that its early chapters require no special knowledge of quantum mechanics. Aspects of gauge field theory relying on quantum mechanics are introduced only later and in a graduated fashion--making the text ideal for students studying gauge field theory and quantum mechanics simultaneously. The book begins with the basic concepts on which gauge field theory is built. It introduces gauge-invariant Lagrangians and describes the spectra of linear perturbations, including perturbations above nontrivial ground states. The second part focuses on the construction and interpretation of classical solutions that exist entirely due to the nonlinearity of field equations: solitons, bounces, instantons, and sphalerons. The third section considers some of the interesting effects that appear due to interactions of fermions with topological scalar and gauge fields. Mathematical digressions and numerous problems are included throughout. An appendix sketches the role of instantons as saddle points of Euclidean functional integral and related topics. Perfectly suited as an advanced undergraduate or beginning graduate text, this book is an excellent starting point for anyone seeking to understand gauge fields.
Quantum physics is based on four fundamental interactions of electromagnetic, weak, gravitational and strong forces. All the interactions are expressed in terms of fermion and boson fields which can describe the quantum states of electrons, nucleons and photons in atoms or nuclei. Correct behaviors of these particles can now be described by the basic field theory terminology, and this textbook explains, for the first time, quantum field theory in a unifying method. At present, modern quantum theory is at a critical junction between different theories, and this textbook presents a clear description of fundamental quantum fields with a sound theoretical framework. No exotic theoretical concepts such as general relativity nor spontaneous symmetry breaking nor quantum anomaly are adopted in this textbook, and indeed all the observed physical quantities can be well understood within the standard field theory framework without introducing any non-physical particles or fields. From this textbook, readers will be guided through a concrete future direction of quantum field theory and will learn how the motion of electrons in any kind of material can be understood in terms of fields or state vectors. Readers will also learn about application of basic field theory in quantum chemistry, quantum biology and so on. Fundamental Problems in Quantum Field Theory is a handy resource for undergraduate and graduate students as well as supervisors involved in advanced courses in quantum physics.
In recent years, gauge fields have attracted much attention in elementary par ticle physics. The reason is that great progress has been achieved in solving a number of important problems of field theory and elementary particle physics by means of the quantum theory of gauge fields. This refers, in particular, to constructing unified gauge models and theory of strong interactions between the elementary particles. This book expounds the fundamentals of the quantum theory of gauge fields and its application for constructing unified gauge models and the theory of strong interactions. In writing the book, the authors' aim was three-fold: firstly, to outline the basic ideas underlying the unified gauge models and the theory of strong inter actions; secondly, to discuss the major unified gauge models, the theory of strong interactions and their experimental implications; and, thirdly, to acquaint the reader with a rather special mathematical approach (path-in tegral method) which has proved to be well suited for constructing the quantum theory of gauge fields. Gauge fields are a vigorously developing area. In this book, we have select ed for presentation the more or less traditional and commonly accepted mate rial. There also exist a number of different approaches which are presently being developed. The most important of them are touched upon in the Conclusion.
This book introduces a large number of topics in lattice gauge theories, including analytical as well as numerical methods. It provides young physicists with the theoretical background and basic computational tools in order to be able to follow the extensive literature on the subject, and to carry out research on their own. Whenever possible, the basic ideas and technical inputs are demonstrated in simple examples, so as to avoid diverting the readers' attention from the main line of thought. Sufficient technical details are however given so that he can fill in the remaining details with the help of the cited literature without too much effort.This volume is designed for graduate students in theoretical elementary particle physics or statistical mechanics with a basic knowledge in Quantum Field Theory.
The Problem Book in Quantum Field Theory contains about 200 problems with solutions or hints that help students to improve their understanding and develop skills necessary for pursuing the subject. It deals with the Klein-Gordon and Dirac equations, classical field theory, canonical quantization of scalar, Dirac and electromagnetic fields, the processes in the lowest order of perturbation theory, renormalization and regularization. The solutions are presented in a systematic and complete manner. The material covered and the level of exposition make the book appropriate for graduate and undergraduate students in physics, as well as for teachers and researchers.