Download Free Fundamental Phenomena In The Material Sciences Book in PDF and EPUB Free Download. You can read online Fundamental Phenomena In The Material Sciences and write the review.

This volume explores in detail the four interrelated branches of the study of surface phenomena-surface thermodynamics, nucleation, diffusion, and fine-particles technology-providing an unusual and comprehensive body of knowledge that will be of interest and practical value to both materials researchers and practising engineers. The growing awareness-since the advent of the space age-among solid-state physicists, metallurgists, ceramists, chemical engineers, and mechanical engineers of the need for a broad interdisciplinary under standing of the fundamental phenomena common to all matedals has led in recent years to the development of a new field of scientific investigation, Materials Science. To help promote interest in and con tributions to this new technology, annual symposia on "Fundamental Phenomena in the Materials Sciences" have been organized by the Ilikon Corporation. The first symposium, reported in Volume 1 of this series, was held in Boston, Massachusetts, on February 1 and 2, 1963; sintering and plastic deformation were the main topics of discussion. The second meeting, also held in Boston, on January 27 and 28, 1964, was exclusively concerned with the general interdisciplinary problems related to surface phenomena, that is, all of those physical and chemical areas that are pertinent to the surface of a solid, or to the interface between a solid and a gas, a solid and a liquid, or a solid and a solid.
Materials science and engineering (MSE) contributes to our everyday lives by making possible technologies ranging from the automobiles we drive to the lasers our physicians use. Materials Science and Engineering for the 1990s charts the impact of MSE on the private and public sectors and identifies the research that must be conducted to help America remain competitive in the world arena. The authors discuss what current and future resources would be needed to conduct this research, as well as the role that industry, the federal government, and universities should play in this endeavor.
Material-Tissue Interfacial Phenomena: Contributions from Dental and Craniofacial Reconstructions explores the material/tissue interfacial phenomena using dental and craniofacial reconstructions as a model system. As the mouth is a particularly caustic environment, the synthetic and/or bio-enabled materials used to repair damaged tissues and restore form, function, and esthetics to oral structures must resist a variety of physical, chemical, and mechanical challenges. These challenges are magnified at the interface between dissimilar structures such as the tooth/material interface. Interfacial reactions at the atomic, molecular, and nano-scales initiate the failure of materials used to repair, restore, and reconstruct dental and craniofacial tissues. Understanding the phenomena that lead to failure at the interface between dissimilar structures, such as synthetic materials and biologic tissues, is confounded by a variety of factors that are thoroughly discussed in this comprehensive book. - Provides a specific focus on the oral environment - Combines clinical views and basic science into a useful reference book - Presents comprehensive coverage of material-interfacial phenomena within the oral environment
This textbook offers a strong introduction to the fundamental concepts of materials science. It conveys the quintessence of this interdisciplinary field, distinguishing it from merely solid-state physics and solid-state chemistry, using metals as model systems to elucidate the relation between microstructure and materials properties. Mittemeijer's Fundamentals of Materials Science provides a consistent treatment of the subject matter with a special focus on the microstructure-property relationship. Richly illustrated and thoroughly referenced, it is the ideal adoption for an entire undergraduate, and even graduate, course of study in materials science and engineering. It delivers a solid background against which more specialized texts can be studied, covering the necessary breadth of key topics such as crystallography, structure defects, phase equilibria and transformations, diffusion and kinetics, and mechanical properties. The success of the first edition has led to this updated and extended second edition, featuring detailed discussion of electron microscopy, supermicroscopy and diffraction methods, an extended treatment of diffusion in solids, and a separate chapter on phase transformation kinetics. “In a lucid and masterly manner, the ways in which the microstructure can affect a host of basic phenomena in metals are described.... By consistently staying with the postulated topic of the microstructure - property relationship, this book occupies a singular position within the broad spectrum of comparable materials science literature .... it will also be of permanent value as a reference book for background refreshing, not least because of its unique annotated intermezzi; an ambitious, remarkable work.” G. Petzow in International Journal of Materials Research. “The biggest strength of the book is the discussion of the structure-property relationships, which the author has accomplished admirably.... In a nutshell, the book should not be looked at as a quick ‘cook book’ type text, but as a serious, critical treatise for some significant time to come.” G.S. Upadhyaya in Science of Sintering. “The role of lattice defects in deformation processes is clearly illustrated using excellent diagrams . Included are many footnotes, ‘Intermezzos’, ‘Epilogues’ and asides within the text from the author’s experience. This ..... soon becomes valued for the interesting insights into the subject and shows the human side of its history. Overall this book provides a refreshing treatment of this important subject and should prove a useful addition to the existing text books available to undergraduate and graduate students and researchers in the field of materials science.” M. Davies in Materials World.
This text is an unbound, three hole punched version. Fundamentals of Materials Science and Engineering: An Integrated Approach, Binder Ready Version, 5th Edition takes an integrated approach to the sequence of topics – one specific structure, characteristic, or property type is covered in turn for all three basic material types: metals, ceramics, and polymeric materials. This presentation permits the early introduction of non-metals and supports the engineer's role in choosing materials based upon their characteristics. Using clear, concise terminology that is familiar to students, Fundamentals presents material at an appropriate level for both student comprehension and instructors who may not have a materials background. This text is an unbound, three hole punched version. Access to WileyPLUS sold separately.
Materials Kinetics: Transport and Rate Phenomena provides readers with a clear understanding of how physical-chemical principles are applied to fundamental kinetic processes. The book integrates advanced concepts with foundational knowledge and cutting-edge computational approaches, demonstrating how diffusion, morphological evolution, viscosity, relaxation and other kinetic phenomena can be applied to practical materials design problems across all classes of materials. The book starts with an overview of thermodynamics, discussing equilibrium, entropy, and irreversible processes. Subsequent chapters focus on analytical and numerical solutions of the diffusion equation, covering Fick's laws, multicomponent diffusion, numerical solutions, atomic models, and diffusion in crystals, polymers, glasses, and polycrystalline materials. Dislocation and interfacial motion, kinetics of phase separation, viscosity, and advanced nucleation theories are examined next, followed by detailed analyses of glass transition and relaxation behavior. The book concludes with a series of chapters covering molecular dynamics, energy landscapes, broken ergodicity, chemical reaction kinetics, thermal and electrical conductivities, Monte Carlo simulation techniques, and master equations. - Covers the full breadth of materials kinetics, including organic and inorganic materials, solids and liquids, theory and experiments, macroscopic and microscopic interpretations, and analytical and computational approaches - Demonstrates how diffusion, viscosity microstructural evolution, relaxation, and other kinetic phenomena can be leveraged in the practical design of new materials - Provides a seamless connection between thermodynamics and kinetics - Includes practical exercises that reinforce key concepts at the end of each chapter
Covers the fundamental science of grinding and polishing by examining the chemical and mechanical interactions over many scale lengths Manufacturing next generation optics has been, and will continue to be, enablers for enhancing the performance of advanced laser, imaging, and spectroscopy systems. This book reexamines the age-old field of optical fabrication from a materials-science perspective, specifically the multiple, complex interactions between the workpiece (optic), slurry, and lap. It also describes novel characterization and fabrication techniques to improve and better understand the optical fabrication process, ultimately leading to higher quality optics with higher yield. Materials Science and Technology of Optical Fabrication is divided into two major parts. The first part describes the phenomena and corresponding process parameters affecting both the grinding and polishing processes during optical fabrication. It then relates them to the critical resulting properties of the optic (surface quality, surface figure, surface roughness, and material removal rate). The second part of the book covers a number of related topics including: developed forensic tools used to increase yield of optics with respect to surface quality (scratch/dig) and fracture loss; novel characterization and fabrication techniques used to understand/quantify the fundamental phenomena described in the first part of the book; novel and recent optical fabrication processes and their connection with the fundamental interactions; and finally, special techniques utilized to fabricate optics with high damage resistance. Focuses on the fundamentals of grinding and polishing, from a materials science viewpoint, by studying the chemical and mechanical interactions/phenomena over many scale lengths between the workpiece, slurry, and lap Explains how these phenomena affect the major characteristics of the optic workpiece—namely surface figure, surface quality, surface roughness, and material removal rate Describes methods to improve the major characteristics of the workpiece as well as improve process yield, such as through fractography and scratch forensics Covers novel characterization and fabrication techniques used to understand and quantify the fundamental phenomena of various aspects of the workpiece or fabrication process Details novel and recent optical fabrication processes and their connection with the fundamental interactions Materials Science and Technology of Optical Fabrication is an excellent guidebook for process engineers, fabrication engineers, manufacturing engineers, optical scientists, and opticians in the optical fabrication industry. It will also be helpful for students studying material science and applied optics/photonics.