Download Free Fundamental Flux Enhancement Modelling Of Membrane Microfiltration Book in PDF and EPUB Free Download. You can read online Fundamental Flux Enhancement Modelling Of Membrane Microfiltration and write the review.

Fundamental Modelling of Membrane Systems: Membrane and Process Performance summarizes the state-of-the-art modeling approaches for all significant membrane processes, from molecular transport, to process level, helping researchers and students who carry out experimental research save time and accurately interpret experimental data. The book provides an overview of the different membrane technologies, handling micro-, ultra-, and nanofiltration, reverse and forward osmosis, pervaporation, gas permeation, supported liquid membranes, membrane contactors, membrane bioreactors and ion-exchange membrane systems. Examples of hybrid membrane systems are also included. - Presents an accessible reference on how to model membranes and membrane processes - Provides a clear, mathematical description of mass transfer in membrane systems - Written by well-known, prominent authors in the field of membrane science
This book provides a critical, carefully researched, up-to-date summary of membranes for membrane bioreactors. It presents a comprehensive and self-contained outline of the fundamentals of membrane bioreactors, especially their relevance as an advanced water treatment technology. This outline helps to bring the technology to the readers’ attention, and positions the critical topic of membrane fouling as one of the key impediments to its more widescale adoption. The target readership includes researchers and industrial practitioners with an interest in membrane bioreactors.
Integrates knowledge on microfiltration and ultrification, membrane chemistry, and characterization methods with the engineering and economic aspects of device performance, device and module design, processes, and applications. The text provides a discussion of membrane fundamentals and an analytical framework for designing and developing new filtrations systems for a broad range of technologically important functions. It offers information on membrane liquid precursors, fractal and stochastic pore space analysis, novel and advanced module designs, and original process design calculations.
This book presents a detailed discussion of the fundamentals and practical applications of membrane technology enhancement in a range of industrial processes, energy recovery, and resource recycling. To date, most books on the applications of membrane technology have mainly focused on gas pollution removal or industrial wastewater treatment. In contrast, the enhancement of various membrane processes in the areas of energy and the environment has remained largely overlooked. This book highlights recent works and industrial products using membrane technology, while also discussing experiments and modeling studies on the membrane enhancement process.
Membrane technology is a rapidly developing area, with key growth accross the process sector, including biotech separation and biomedical applications (e.g. haemodialysis, artificial lungs), through to large scale industrial applications in the water and waste-water processing and the food and drink industries. As processes mature, and the cost of membranes continues to dramatically reduce, so their applications and use are set to expand. Process engineers need access to the latest information in this area to assist with their daily work and to help to develop and apply new and ever more efficient liquid processing solutions. This book covers the latest technologies and applications, with contributions from leading figures in the field. Throughout, the emphasis is on delivering solutions to practitioners. Real world case studies and data from leading organizations -- including Cargill, Lilly, Microbach, ITT -- mean this book delivers the latest solutions as well as a critical working reference to filtration and separation professionals. - Covers the latest technologies and applications in this fast moving bioprocessing sector - Presents a wide range of case studies that ensure readers benefit from the hard-won experience of others, saving time, money and effort - World class author team headed up by the Chair of Chemical Engineering at Oxford University, UK and the VP of Plant Operations and Process Technology at Cargill Corp, the food services company and largest privately owned company in the US
A response to increasingly stringent regulation of pollution and toxicity levels in industrial waste discharge, Micellar Enhanced Ultrafiltration: Fundamentals & Applications offers the most complete book available on the benefits and use of micellar-enhanced ultrafiltration (MEUF) to achieve continuous removal of organic and inorganic pollutants. An Unparalleled Book That Addresses Both Academic and Industrial Points of View Several membrane-based techniques, such as microfiltration, ultrafiltration, nanofiltration, and reverse osmosis, are currently used in a wide range of applications throughout the textile, pulp and paper, sugar, chemical, pharmaceutical, biomedical, biotechnological, and food industries. However, although reverse osmosis is an effective means of removing contaminants, this book explains why MEUF is a better substitute, as it less expensive, less energy-intensive, and more efficient and practical for a wider range of applications. Topics covered include: Effects of pollution in water and its consequences Various treatment processes and membrane technologies Fundamentals of ultrafiltration Outline of various membrane modules and modeling approaches Principles of colloid chemistry Theories of micelle formation Stability and dynamics of micelles Phenomena of counterion binding Solubilization of organic pollutants Selection criteria for surfactants Various flux enhancement techniques Recovery of precious metals This book conveys how, with proper selection of surfactant and membrane, MEUF can be used to efficiently remove almost all metal ions (heavy metals, lanthanides, radioactive materials, etc.) with reasonably high efficiency and throughput. It also details the MEUF process for removal of inorganic (cations, anions, and their mixture) and organic pollutants. The authors explain how the economy of the overall process makes recovery and reuse of surfactants essential, and they address various influencing factors on the increase in throughput and the resulting operating problems. Elaborating on technologies involving precipitation and other methods, they also illustrate additional potential applications for MEUF technology.
Membrane processes are increasingly used in pharmaceutical and biochemical engineering and biotechnology for concentration and purification, synthesis of molecules and drug delivery systems, and support for biochemical reactions. This book provides a state-of-the art overview of the classical membrane processes used in pharmaceutical and biochemical engineering and biotechnology, such as ultrafiltration, microfiltration, virus filtration, membrane chromatography, membrane emulsification, liquid membranes and membrane bioreactors. It describes the general rules (principles, choice of configurations, membranes, parameters, etc.), recent developments (fouling control, increase permeate flux and selectivity, etc.), applications, and theoretical descriptions. Further, it presents emerging processes such as solvent resistant nanofiltration and membrane crystallization. - Presents classical membrane processes such as ultrafiltration, microfiltration, virus filtration, membrane chromatography, membrane emulsification, liquid membranes and membrane bioreactors - Presents emerging processes such as solvent resistant nanofiltration and membrane crystallization - Gives a complete description of each technique (principles, membrane materials and devices, fouling control, and theoretical description) - Contains numerous examples of applications - Includes a uniform notation throughout the book enhancing the presentation and understanding of the content - Includes extensive list of references
Fundamentals of Membrane Separation Technology provides a comprehensive and systematic introduction to this environmentally friendly separation process. Using a structured format that promotes comprehension and implementation each chapter provides overviews, principles, materials and preparation, and industrial applications. Each chapter then concludes with future prospects, references, and end of chapter exercises. Written for students and professionals, this book is an ideal reference for those who wish to better understand the fundamentals and applications of membrane technology. - Evaluates present and future applications of more recently developed membranes in energy conversion, biomedical components, controlled release devices, and environmental engineering - Provides a comprehensive overview of all aspects of membranes and their applications - Includes numerous industrial case studies, practical examples, and questions
Membrane Contactors: Fundamentals, Applications and Potentialities, Volume 11 covers new operations that could be efficiently used to improve the performance of a variety of industrial production cycles in applications ranging from biotechnology to agrofood. This book focuses on the basic "principles of work": required membrane materials and properties; major operating parameters; the importance of module configuration and design and; the performance of membrane contactors in specific processes. The authors' dynamic approach to this subject makes Membrane Contactors: Fundamentals, Applications and Potentialities, Volume 11 the most comprehensive book currently available on all aspects related to the 'membrane contactor world.* Describes new unit operations in process engineering* Covers a wide variety of industrial applications, from biotechnology to agrofood* Applicable to process intensification and sustainable growth strategies
This ready reference on Membrane Technologies for Water Treatment, is an invaluable source detailing sustainable, emerging processes, to provide clean, energy saving and cost effective alternatives to conventional processes. The editors are internationally renowned leaders in the field, who have put together a first-class team of authors from academia and industry to present a highly approach to the subject. The book is an instrumental tool for Process Engineers, Chemical Engineers, Process Control Technicians, Water Chemists, Environmental Chemists, Materials Scientists and Patent Lawyers.