Download Free Fundamental Fluid Mechanics 7e Instant Access To The Wileyplus Course Etext Book in PDF and EPUB Free Download. You can read online Fundamental Fluid Mechanics 7e Instant Access To The Wileyplus Course Etext and write the review.

This package includes a copy of ISBN 9781118116135 and a registration code for the WileyPLUS course associated with the text. Before you purchase, check with your instructor or review your course syllabus to ensure that your instructor requires WileyPLUS. For customer technical support, please visit http: //www.wileyplus.com/support. WileyPLUS registration cards are only included with new products. Used and rental products may not include WileyPLUS registration cards. Fundamentals of Fluid Mechanics, 7th Edition offers comprehensive topical coverage, with varied examples and problems, application of visual component of fluid mechanics, and strong focus on effective learning. The text enables the gradual development of confidence in problem solving. The authors have designed their presentation to enable the gradual development of reader confidence in problem solving. Each important concept is introduced in easy-to-understand terms before more complicated examples are discussed. Continuing this book's tradition of extensive real-world applications, the 7th edition includes more Fluid in the News case study boxes in each chapter, new problem types, an increased number of real-world photos, and additional videos to augment the text material and help generate student interest in the topic. Example problems have been updated and numerous new photographs, figures, and graphs have been included. In addition, there are more videos designed to aid and enhance comprehension, support visualization skill building and engage students more deeply with the material and concepts.
Fluid mechanics is the study under all possible conditions of rest and motion. Its approaches analytical, rational, and mathematical rather than empirical it concerns itself with those basic principles which lead to the solution of numerous diversified problems, and it seeks results which are widely applicable to similar fluid situations and not limited to isolated special cases. Fluid mechanics recognizes no arbitrary boundaries between fields of engineering knowledge but attempts to solve all fluid problems, irrespective of their occurrence or of the characteristics of the fluids involved. This textbook is intended primarily for the beginner who knows the principles of mathematics and mechanics but has had no previous experience with fluid phenomena. The abilities of the average beginner and the tremendous scope of fluid mechanics appear to be in conflict, and the former obviously determine limits beyond which it is not feasible to go these practical limits represent the boundaries of the subject which I have chosen to call elementary fluid mechanics. The apparent conflict between scope of subject and beginner ability is only along mathematical lines, however, and the physical ideas of fluid mechanics are well within the reach of the beginner in the field. Holding to the belief that physical concepts are the sine qua non of mechanics, I have sacrificed mathematical rigor and detail in developing physical pictures and in many cases have stated general laws only without numerous exceptions and limitations in order to convey basic ideas such oversimplification is necessary in introducing a new subject to the beginner. Like other courses in mechanics, fluid mechanics must include disciplinary features as well as factual information the beginner must follow theoretical developments, develop imagination in visualizing physical phenomena, and be forced to think his way through problems of theory and application. The text attempts to attain these objectives in the following ways omission of subsidiary conclusions is designed to encourage the student to come to some conclusions by himself application of bare principles to specific problems should develop ingenuity illustrative problems are included to assist in overcoming numerical difficulties and many numerical problems for the student to solve are intended not only to develop ingenuity but to show practical applications as well. Presentation of the subject begins with a discussion of fundamentals, physical properties and fluid statics. Frictionless flow is then discussed to bring out the applications of the principles of conservation of mass and energy, and of impulse-momentum law, to fluid motion. The principles of similarity and dimensional analysis are next taken up so that these principles may be used as tools in later developments. Frictional processes are discussed in a semi-quantitative fashion, and the text proceeds to pipe and open-channel flow. A chapter is devoted to the principles and apparatus for fluid measurements, and the text ends with an elementary treatment of flow about immersed objects.
Munson, Young, and Okiishi's Fundamentals of Fluid Mechanics is intended for undergraduate engineering students for use in a first course on fluid mechanics. Building on the well-established principles of fluid mechanics, the book offers improved and evolved academic treatment of the subject. Each important concept or notion is considered in terms of simple and easy-to-understand circumstances before more complicated features are introduced. The presentation of material allows for the gradual development of student confidence in fluid mechanics problem solving. This International Adaptation of the book comes with some new topics and updates on concepts that clarify, enhance, and expand certain ideas and concepts. The new examples and problems build upon the understanding of engineering applications of fluid mechanics and the edition has been completely updated to use SI units.
Through ten editions, Fox and McDonald's Introduction to Fluid Mechanics has helped students understand the physical concepts, basic principles, and analysis methods of fluid mechanics. This market-leading textbook provides a balanced, systematic approach to mastering critical concepts with the proven Fox-McDonald solution methodology. In-depth yet accessible chapters present governing equations, clearly state assumptions, and relate mathematical results to corresponding physical behavior. Emphasis is placed on the use of control volumes to support a practical, theoretically-inclusive problem-solving approach to the subject. Each comprehensive chapter includes numerous, easy-to-follow examples that illustrate good solution technique and explain challenging points. A broad range of carefully selected topics describe how to apply the governing equations to various problems, and explain physical concepts to enable students to model real-world fluid flow situations. Topics include flow measurement, dimensional analysis and similitude, flow in pipes, ducts, and open channels, fluid machinery, and more. To enhance student learning, the book incorporates numerous pedagogical features including chapter summaries and learning objectives, end-of-chapter problems, useful equations, and design and open-ended problems that encourage students to apply fluid mechanics principles to the design of devices and systems.
This book gives a coherent development of the current understanding of the fluid dynamics of the middle latitude atmosphere. It is primarily aimed at post-graduate and advanced undergraduate level students and does not assume any previous knowledge of fluid mechanics, meteorology or atmospheric science. The book will be an invaluable resource for any quantitative atmospheric scientist who wishes to increase their understanding of the subject. The importance of the rotation of the Earth and the stable stratification of its atmosphere, with their implications for the balance of larger-scale flows, is highlighted throughout. Clearly structured throughout, the first of three themes deals with the development of the basic equations for an atmosphere on a rotating, spherical planet and discusses scale analyses of these equations. The second theme explores the importance of rotation and introduces vorticity and potential vorticity, as well as turbulence. In the third theme, the concepts developed in the first two themes are used to give an understanding of balanced motion in real atmospheric phenomena. It starts with quasi-geostrophic theory and moves on to linear and nonlinear theories for mid-latitude weather systems and their fronts. The potential vorticity perspective on weather systems is highlighted with a discussion of the Rossby wave propagation and potential vorticity mixing covered in the final chapter.
Market_Desc: · Civil Engineers· Chemical Engineers· Mechanical Engineers· Civil, Chemical and Mechanical Engineering Students Special Features: · Explains concepts in a way that increases awareness of contemporary issues as well as the ethical and political implications of their work· Recounts instances of fluid mechanics in real-life through new Fluids in the News sidebars or case study boxes in each chapter· Allows readers to quickly navigate from the list of key concepts to detailed explanations using hyperlinks in the e-text· Includes Fluids Phenomena videos in the e-text, which illustrate various aspects of real-world fluid mechanics· Provides access to download and run FlowLab, an educational CFD program from Fluent, Inc About The Book: With its effective pedagogy, everyday examples, and outstanding collection of practical problems, it's no wonder Fundamentals of Fluid Mechanics is the best-selling fluid mechanics text. The book helps readers develop the skills needed to master the art of solving fluid mechanics problems. Each important concept is considered in terms of simple and easy-to-understand circumstances before more complicated features are introduced. The new edition also includes a free CD-ROM containing the e-text, the entire print component of the book, in searchable PDF format.
A fully comprehensive guide to thermal systems design covering fluid dynamics, thermodynamics, heat transfer and thermodynamic power cycles Bridging the gap between the fundamental concepts of fluid mechanics, heat transfer and thermodynamics, and the practical design of thermo-fluids components and systems, this textbook focuses on the design of internal fluid flow systems, coiled heat exchangers and performance analysis of power plant systems. The topics are arranged so that each builds upon the previous chapter to convey to the reader that topics are not stand-alone items during the design process, and that they all must come together to produce a successful design. Because the complete design or modification of modern equipment and systems requires knowledge of current industry practices, the authors highlight the use of manufacturer’s catalogs to select equipment, and practical examples are included throughout to give readers an exhaustive illustration of the fundamental aspects of the design process. Key Features: Demonstrates how industrial equipment and systems are designed, covering the underlying theory and practical application of thermo-fluid system design Practical rules-of-thumb are included in the text as ‘Practical Notes’ to underline their importance in current practice and provide additional information Includes an instructor’s manual hosted on the book’s companion website
A concise introductory course text on continuum mechanics Fundamentals of Continuum Mechanics focuses on the fundamentals of the subject and provides the background for formulation of numerical methods for large deformations and a wide range of material behaviours. It aims to provide the foundations for further study, not just of these subjects, but also the formulations for much more complex material behaviour and their implementation computationally. This book is divided into 5 parts, covering mathematical preliminaries, stress, motion and deformation, balance of mass, momentum and energy, and ideal constitutive relations and is a suitable textbook for introductory graduate courses for students in mechanical and civil engineering, as well as those studying material science, geology and geophysics and biomechanics. A concise introductory course text on continuum mechanics Covers the fundamentals of continuum mechanics Uses modern tensor notation Contains problems and accompanied by a companion website hosting solutions Suitable as a textbook for introductory graduate courses for students in mechanical and civil engineering
Provides a clear, concise, and self-contained introduction to Computational Fluid Dynamics (CFD) This comprehensively updated new edition covers the fundamental concepts and main methods of modern Computational Fluid Dynamics (CFD). With expert guidance and a wealth of useful techniques, the book offers a clear, concise, and accessible account of the essentials needed to perform and interpret a CFD analysis. The new edition adds a plethora of new information on such topics as the techniques of interpolation, finite volume discretization on unstructured grids, projection methods, and RANS turbulence modeling. The book has been thoroughly edited to improve clarity and to reflect the recent changes in the practice of CFD. It also features a large number of new end-of-chapter problems. All the attractive features that have contributed to the success of the first edition are retained by this version. The book remains an indispensable guide, which: Introduces CFD to students and working professionals in the areas of practical applications, such as mechanical, civil, chemical, biomedical, or environmental engineering Focuses on the needs of someone who wants to apply existing CFD software and understand how it works, rather than develop new codes Covers all the essential topics, from the basics of discretization to turbulence modeling and uncertainty analysis Discusses complex issues using simple worked examples and reinforces learning with problems Is accompanied by a website hosting lecture presentations and a solution manual Essential Computational Fluid Dynamics, Second Edition is an ideal textbook for senior undergraduate and graduate students taking their first course on CFD. It is also a useful reference for engineers and scientists working with CFD applications.