Download Free Functionalized Carbon Nanotubes For Biomedical Applications Book in PDF and EPUB Free Download. You can read online Functionalized Carbon Nanotubes For Biomedical Applications and write the review.

Carbon-based nanomaterials are rapidly emerging as one of the most fascinating materials in the twenty-first century. Chemical Functionalization of Carbon Nanomaterials: Chemistry and Applications provides a thorough examination of carbon nanomaterials, including their variants and how they can be chemically functionalized. It also gives a comprehe
This book explores the potential of multi-functional carbon nanotubes for biomedical applications. It combines contributions from chemistry, physics, biology, engineering, and medicine. The complete overview of the state-of-the-art addresses different synthesis and biofunctionalisation routes and shows the structural and magnetic properties of nanotubes relevant to biomedical applications. Particular emphasis is put on the interaction of carbon nanotubes with biological environments, i.e. toxicity, biocompatibility, cellular uptake, intracellular distribution, interaction with the immune system and environmental impact. The insertion of NMR-active substances allows diagnostic usage as markers and sensors, e.g. for imaging and contactless local temperature sensing. The potential of nanotubes for therapeutic applications is highlighted by studies on chemotherapeutic drug filling and release, targeting and magnetic hyperthermia studies for anti-cancer treatment at the cellular level.
Since their discovery more than a decade ago, carbon nanotubes (CNTs) have held scientists and engineers in captive fascination, seated on the verge of enormous breakthroughs in areas such as medicine, electronics, and materials science, to name but a few. Taking a broad look at CNTs and the tools used to study them, Carbon Nanotubes: Properties and Applications comprises the efforts of leading nanotube researchers led by Michael O’Connell, protégé of the late father of nanotechnology, Richard Smalley. Each chapter is a self-contained treatise on various aspects of CNT synthesis, characterization, modification, and applications. The book opens with a general introduction to the basic characteristics and the history of CNTs, followed by discussions on synthesis methods and the growth of “peapod” structures. Coverage then moves to electronic properties and band structures of single-wall nanotubes (SWNTs), magnetic properties, Raman spectroscopy of electronic and chemical behavior, and electromechanical properties and applications in NEMS (nanoelectromechanical systems). Turning to applications, the final sections of the book explore mechanical properties of SWNTs spun into fibers, sidewall functionalization in composites, and using SWNTs as tips for scanning probe microscopes. Taking a fresh look at this burgeoning field, Carbon Nanotubes: Properties and Applications points the way toward making CNTs commercially viable.
Functionalized Carbon Nanomaterials for Theranostic Applications offers insights into the developments and trends that are progressing fast in the field of functionalized carbon nanomaterials-based devices as diagnostic tools for early stage detection of human diseases. The book provides information on how functionalized carbon nanomaterials are being used as the basis for products, such as early disease diagnostic kits, quantum dots for medical imaging and a growing list of other applications. Sections cover different mechanical, absorption, optical and electrical properties than those found in original nanomaterials. This is an important reference source that will be valuable to materials scientists, biomedical engineers and pharmaceutical scientists who are looking to increase their understanding on how functionalized carbon nanomaterials are being used for a variety of theranostic applications. - Provides readers with information on how to develop functionalized carbon nanomaterials based diagnostic devices and tools - Identifies fabrication and characterization methods for integrated devices for use in theranostic applications - Assesses major challenges for manufacturing functionalized carbon nanomaterial materials for theranostic devices on an industrial scale
Carbon nanotubes belong to new nanomaterials and have been known for almost 20 years, but their history is somewhat lengthier. They have been identified as promising candidates for various applications.High-temperature preparation techniques are conventional techniques for the synthesis of carbon nanotubes using arc discharge or laser ablation, but today these methods are being replaced by low-temperature vapor deposition techniques, since orientation, alignment, nanotube length, diameter, purity, and density of carbon nanotubes can be precisely controlled. The synthesis of carbon nanotubes by chemical vapor deposition on catalyst arrays leads to nanotube models grown from specific sites on surfaces. The controlled synthesis of nanotubes opens up interesting possibilities in nanoscience and nanotechnologies, including electrical, mechanical and electromechanical properties and devices, chemical functionalization, surface chemistry and photochemistry, molecular sensors, and interfacing with moderate biological systems.Carbon nanotubes are used in many applications due to their unique electrical, mechanical, optical, thermal, and other properties. Conductive and high-strength composite materials, energy saving and energy conversion devices, sensors, visualization of field emissions and sources of radiation, means for storing hydrogen, and nanoscale semiconductor devices, probes, and interconnections are some of the many applications of carbon nanotubes.
A comprehensive discussion of various types of nanoengineered biomaterials and their applications In Nanoengineering of Biomaterials: Drug Delivery & Biomedical Applications, an expert team of chemists delivers a succinct exploration of the synthesis, characterization, in-vitro and in-vivo drug molecule release, pharmacokinetic activity, pharmacodynamic activity, and the biomedical applications of several types of nanoengineered biomaterials. The editors have also included resources to highlight the most current developments in the field. The book is a collection of valuable and accessible reference sources for researchers in materials chemistry and related disciplines. It uses a functions-directed approach to using organic and inorganic source compounds that translate into biological systems as scaffolds, micelles, dendrimers, and other delivery systems. Nanoengineering of Biomaterials offers readers up-to-date chemistry and material science insights that are readily transferrable to biomedical systems. The book also includes: Thorough introductions to alginate nanoparticle delivery of therapeutics and chitosan-based nanomaterials in biological applications Comprehensive explorations of nanostructured carrageenan as a drug carrier, gellan gum nanoparticles in drug delivery, and guar-gum nanoparticles in the delivery of bioactive molecules Practical discussions of protein-based nanoparticles for drug delivery, solid lipid nanoparticles as drug carriers, and pH-responsive nanoparticles in therapy In-depth examinations of stimuli-responsive nano carriers in drug targeting Perfect for pharmaceutical chemists, materials scientists, polymer chemists, life scientists, and medicinal chemists, Nanoengineering of Biomaterials: Drug Delivery and Biomedical Applications is also an indispensable resource for biologists and bioengineers seeking a one-stop reference on the transferability of materials chemistry and nanotechnology to biomedicine.
FUNCTIONALIZED CARBON NANOTUBES FOR BIOMEDICAL APPLICATIONS The book highlights established research and technology on current and emerging trends and biomedical applications of functionalized carbon nanotubes by providing academic researchers and scientists in industry, as well as high-tech start-ups, with knowledge of the modern practices that will revolutionize using functionalized carbon nanotubes. Nanotechnology suggests fascinating opportunities for a variety of applications in biomedical fields, including bioimaging and targeted delivery of biomacromolecules into cells. Numerous strategies have been recommended to functionalize carbon nanotubes with raised solubility for efficient use in biomedical applications. Functionalized carbon nanotubes have unique arrangements and extravagant mechanical, thermal, magnetic, optical, electrical, surface, and chemical properties, and the combination of these features gives them widespread biomedical applications. Functionalized carbon nanotubes are relatively flexible and interact with the cell membranes and penetrate different biological tissues owing to a “snaking” effect, therefore both the pharmacological and toxicological profiles of functionalized carbon nanotubes have gathered much attention in recent times. This book covers a broad range of topics relating to carbon nanotubes, from synthesis and functionalization to applications in advanced biomedical devices and systems. As they possess unique and attractive physical, chemical, optical, and even magnetic properties for various applications, considerable effort has been made to employ functionalized carbon nanotubes as new materials for the development of novel biomedical tools, such as diagnostic sensors, imaging agents, and drug/gene delivery systems for both diagnostics and clinical treatment. Audience The book is intended for a very broad audience of researchers and scientists working in the fields of nanomaterials, nanomedicine, bioinspired nanomaterials, nanotechnology, and biomedical application of nanomaterials.
FUNCTIONALIZED CARBON NANOTUBES FOR BIOMEDICAL APPLICATIONS The book highlights established research and technology on current and emerging trends and biomedical applications of functionalized carbon nanotubes by providing academic researchers and scientists in industry, as well as high-tech start-ups, with knowledge of the modern practices that will revolutionize using functionalized carbon nanotubes. Nanotechnology suggests fascinating opportunities for a variety of applications in biomedical fields, including bioimaging and targeted delivery of biomacromolecules into cells. Numerous strategies have been recommended to functionalize carbon nanotubes with raised solubility for efficient use in biomedical applications. Functionalized carbon nanotubes have unique arrangements and extravagant mechanical, thermal, magnetic, optical, electrical, surface, and chemical properties, and the combination of these features gives them widespread biomedical applications. Functionalized carbon nanotubes are relatively flexible and interact with the cell membranes and penetrate different biological tissues owing to a “snaking” effect, therefore both the pharmacological and toxicological profiles of functionalized carbon nanotubes have gathered much attention in recent times. This book covers a broad range of topics relating to carbon nanotubes, from synthesis and functionalization to applications in advanced biomedical devices and systems. As they possess unique and attractive physical, chemical, optical, and even magnetic properties for various applications, considerable effort has been made to employ functionalized carbon nanotubes as new materials for the development of novel biomedical tools, such as diagnostic sensors, imaging agents, and drug/gene delivery systems for both diagnostics and clinical treatment. Audience The book is intended for a very broad audience of researchers and scientists working in the fields of nanomaterials, nanomedicine, bioinspired nanomaterials, nanotechnology, and biomedical application of nanomaterials.
Fullerenes and nanotubes are two classes of carbon structures or allotropes, which were discovered about 17 years ago. Since that time, many chemical derivatives have been synthesized using fullerenes and nanotubes as building blocks. Particularly promising was the theory that the chemical properties of fullerenes, and certain derivatives, made them likely candidates for anticancer drugs, inhibitors of viruses such as HIV, or even as anti-bacterials. Their cyctotoxicity can also be controlled by specific circumstances. In addition, the funtionalization of nanotubes has not only produced relatively simple derivatives, but also complex hybrids with biological macromolecules, which show unique supramolecular architecture and which are promising in many medical applications. The application of fullerenes and nanotubes in medicine is at the frontier of our knowledge, thus the work in this field represents the basis for future novel developments.
Nanobiomaterials in Medical Imaging presents the latest developments in medical exploratory approaches using nanotechnology. Leading researchers from around the world discuss recent progress and state-of-the-art techniques. The book covers synthesis and surface modification of multimodal imaging agents, popular examples of nanoparticles and their applications in different imaging techniques, and combinatorial therapy for the development of multifunctional nanocarriers. The advantages and potential of current techniques are also considered. This book will be of interest to postdoctoral researchers, professors and students engaged in the fields of materials science, biotechnology and applied chemistry. It will also be highly valuable to those working in industry, including pharmaceutics and biotechnology companies, medical researchers, biomedical engineers and advanced clinicians. - A valuable resource for researchers, practitioners and students working in biomedical, biotechnological and engineering fields - A detailed guide to recent scientific progress, along with the latest application methods - Presents innovative opportunities and ideas for developing or improving technologies in nanomedicine and medical imaging