Download Free Functionality Of Plant Proteins Book in PDF and EPUB Free Download. You can read online Functionality Of Plant Proteins and write the review.

Proteins: Sustainable Source, Processing and Applications addresses sustainable proteins, with an emphasis on proteins of animal origin, plant-based and insect proteins, microalgal single cell proteins, extraction, production, the stability and bioengineering of proteins, food applications (e.g. encapsulation, films and coatings), consumer behavior and sustainable consumption. Written in a scientific manner to meet the needs of chemists, food scientists, technologists, new product developers and academics, this book addresses the health effects and properties of proteins, highlights sustainable sources, processes and consumption models, and analyzes the potentiality of already commercialized processes and products. This book is an integral resource that supports the current applications of proteins in the food industry, along with those that are currently under development. - Supports the current applications of proteins in the food industry, along with those that are under development - Connects the properties and health effects of proteins with sustainable sources, recovery procedures, stability and encapsulation - Explores industrial applications that are affected by aforementioned aspects
The book is devoted to expanding current views on the phenomena of protein functionality in food systems. Protein functionalities in foods have been the object ofextensive research over the last thirty to forty years and significant progress has been made in understanding the mechanism and factors influencing the functionality of proteins. The functionality of proteins is one of the fastest developing fields in the studies of protein utilization in foods. Currently, a broad spectrum of data related to protein functionality in food systems has been collected, however, much more needs to be known. In this volume, the most important functional properties offood proteins are presented: Protein solubility, water holding capacity and fat binding, emulsifying, foaming, and gelling properties as affected by protein source, environmental factors (pH, temperature, ionic strength) and protein concentration; Relationships between protein conformation, physicochemical properties, and functional properties; Protein functional properties as influenced by various food processing conditions, particularly heat treatment, dehydration, freezing and storage when frozen, extraction and other processes; Effects ofprotein modification on the enhancementofprotein functionality; Utilization ofvarious proteins in improving functional properties in food systems. Those aspects of protein functionality are presented which the author believes to be interesting and most important for protein utilization in food systems. The book is recommended to students and food scientists engaged in food protein research and food industry research, and development scientists. Table ofContents Introduction 1 References 5 Chapter 1 Solubility ofProteins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 1. 1 Factors Affecting Solubility ofProteins. . . . . . . . . . . . . . . . . . . . . . . .
A groundbreaking text that highlights the various sources, applications and advancements concerning proteins from novel and traditional sources Novel Proteins for Food, Pharmaceuticals and Agriculture offers a guide to the various sources, applications, and advancements that exist and are currently being researched concerning proteins from novel and traditional sources. The contributors—noted experts in the field—discuss sustainable protein resources and include illustrative examples of bioactive compounds isolated from several resources that have or could obtain high market value in specific markets. The text also explores a wide range of topics such as functional food formulations and pharmaceutical applications, and how they alter biological activity to provide therapeutic benefits, nutritional values and health protection. The authors also examine the techno-functional applications of proteins and looks at the screening process for identification of bioactive molecules derived from protein sources. In addition, the text provides insight into the market opportunities that exist for novel proteins such as insect, by-product derived, macroalgal and others. The authors also discuss the identification and commercialization of new proteins for various markets. This vital text: Puts the focus on the various sources, applications and advancements concerning proteins from novel and traditional sources Contains a discussion on how processing technologies currently applied to dairy could be applied to novel protein sources such as insect and macroalgal Reviews the sustainability of protein sources and restrictions that exist concerning development Offers ideas for creating an innovative and enterprising economy that is built on recent developments Details the potential to exploit key market opportunities in sports, infant and elderly nutrition and techno-functional protein applications Written for industrial researchers as well as PhD and Post-doctoral researchers, and undergraduate students studying biochemistry, food engineering and biological sciences and those interested in market developments, Novel Proteins for Food, Pharmaceuticals and Agriculture offers an essential guide to the sources, applications and most recent developments of the proteins from both innovative and traditional sources.
Functionality of Food Proteins: Mechanisms, Modifications, Methods of Assessment and Applications provides researchers and users of plant-based proteins with the latest developments on their functionality at the molecular and ingredient level, and in food applications. The book discusses the biological, chemical and physical principles behind the techno-functional and nutritional properties of proteins, existing methods of functionality assessment, and protein modification for functional enhancement. With market demand for protein ingredients, several lesser known sources are being utilized to develop new protein ingredients and products, with some intended to replace, partially or wholly, traditional proteins such as egg, milk, meat, soy and vital gluten. Depending on the source and processing into ingredients, the ability of these proteins to satisfy techno-functional and nutritional requirements in the final food product may differ. Science-based knowledge is needed in the area of protein functionality for making decisions along the value chain, from production on the land to processing and formulation. - Provides fundamentals of the properties that contribute to functionality (nutritional and techno-functional properties) of proteins in food systems and their relationship to protein molecular structure - Describes fundamentals of the assessment of functional properties of protein with existing definitions and food systems - Explores fundamentals of modification strategies employed to alter nutritional and techno-functional properties to enhance value of proteins in food - Includes examples of plant protein-based products (in food systems) in which the role of nutritional and techno-functional properties is described
Covering the whole value chain - from product requirements and properties via process technologies and equipment to real-world applications - this reference represents a comprehensive overview of the topic. The editors and majority of the authors are members of the European Federation of Chemical Engineering, with backgrounds from academia as well as industry. Therefore, this multifaceted area is highlighted from different angles: essential physico-chemical background, latest measurement and prediction techniques, and numerous applications from cosmetic up to food industry. Recommended reading for process, pharma and chemical engineers, chemists in industry, and those working in the pharmaceutical, food, cosmetics, dyes and pigments industries.
Joint FAO/IAEA/WHO Study Group on High-Dose Irradiation (Wholesomeness of Food Irradiated with Doses Above 10 kGy), Geneva, 15-20 September 1997
This reference work provides comprehensive information about the bioactive molecules presented in our daily food and their effect on the physical and mental state of our body. Although the concept of functional food is new, the consumption of selected food to attain a specific effect existed already in ancient civilizations, namely of China and India. Consumers are now more attentive to food quality, safety and health benefits, and the food industry is led to develop processed- and packaged-food, particularly in terms of calories, quality, nutritional value and bioactive molecules. This book covers the entire range of bioactive molecules presented in daily food, such as carbohydrates, proteins, lipids, isoflavonoids, carotenoids, vitamin C, polyphenols, bioactive molecules presented in wine, beer and cider. Concepts like French paradox, Mediterranean diet, healthy diet of eating fruits and vegetables, vegan and vegetarian diet, functional foods are described with suitable case studies. Readers will also discover a very timely compilation of methods for bioactive molecules analysis. Written by highly renowned scientists of the field, this reference work appeals to a wide readership, from graduate students, scholars, researchers in the field of botany, agriculture, pharmacy, biotechnology and food industry to those involved in manufacturing, processing and marketing of value-added food products.
Among the major challenges facing society today, seeking renewable alternatives to petroleum-based fuels and manufactured goods is critically important to reducing society’s dependency on petroleum and tackling environmental issues associated with petroleum use. In recent years there has been considerable research targeted toward the development of plant-derived bioproducts to replace petrochemical feedstocks for both fuel and manufacturing. Plants not only provide a large amount of renewable biomass, but their biochemical diversity also offers many chemical and molecular tools for the production of new products through biotechnology. Plant Bioproducts is an introduction to the production and application of plant bioproducts, including biofuels, bioplastics, and biochemicals for the manufacturing sector. Contributing authors examine various bioproducts with respect to their basic chemistry, relationship to current petrochemical-based products, and strategies for their production in plants. Chapters cover the integrated roles of agronomy, plant breeding, biotechnology, and biorefining in the context of bioproduct development. Environmental, economic, ethical, and social issues surrounding bioproducts, including the use of genetically modified crops, challenges to food security, and consumer acceptance, are also covered.
Recombinant Proteins from Plants is one of the most exciting and fastest developing areas in biology. The latest molecular techniques are being applied to the exploitation of plants as novel expression systems for the p- duction and overproduction of heterologous and native proteins. Transgenic plant technology is currently used in three broad areas: the expression of - combinant proteins to improve crop quality by increasing disease/pest res- tance or increasing tolerance to stress, optimizing plant productivity and yield by the genetic manipulation of metabolic pathways, and the large-scale co- effective production of recombinant proteins for use as specialist industrial or therapeutic biomolecules. The intention of Recombinant Proteins from Plants is to provide c- prehensive and detailed protocols covering all the latest molecular approaches. Because the production oftransgenic plants has become routine in many la- ratories, coverage is also given to some of the more "classical" approaches to the separation, analysis, and characterization of recombinant proteins. The book also includes areas of research that we believe will become increasingly important in the near future: efficient transformation of monocots with Agrobacterium optimizing the stability of recombinant proteins, and a section highlighting the immunotherapeutic potential of plant-expressed proteins.