Download Free Functionality Advancements And Industrial Applications Of Heat Pipes Book in PDF and EPUB Free Download. You can read online Functionality Advancements And Industrial Applications Of Heat Pipes and write the review.

Functionality, Advancements and Industrial Applications of Heat Pipes introduces heat pipe technologies and highlights a variety of applications for passive thermal control. The book begins with a thorough analysis of heat pipe infrastructure, including principles of operation, temperature limits, reliability and lessons learned from worked examples and case studies. It also presents a concise design guideline for the assembly of heat pipes. The second part moves on to consider a variety of modern day applications for the heat pipe principles discussed, covering nuclear and solar thermal energy engineering facilities as well as applications in space, in the sea and in the air. A final section works through manufacturing elements of different types of heat pipe to ensure they are well maintained and remain fully operational. This section includes the cleaning of parts, the assembly of the heat pipe, an analysis of gas blockages and how to deal with them, as well as performance versification. - Analyzes a wide variety of heat pipes used in various settings, including constant-conductance heat pipes, loop heat pipes and wrap around heat pipes - Considers applications at sea, in the air, on land and in space, including the nuclear and solar energy industries, heat pipes in spacecraft and heat pipe reactors - Includes a heat pipe assembly and design guide, as well as an analysis of lessons learned from different case studies
This book provides a practical study of modern heat pipe engineering, discussing how it can be optimized for use on a wider scale. An introduction to operational and design principles, this book offers a review of heat and mass transfer theory relevant to performance, leading into and exploration of the use of heat pipes, particularly in high-heat flux applications and in situations in which there is any combination of non-uniform heat loading, limited airflow over the heat generating components, and space or weight constraints. Key implementation challenges are tackled, including load-balancing, materials characteristics, operating temperature ranges, thermal resistance, and operating orientation. With its presentation of mathematical models to calculate heat transfer limitations and temperature gradient of both high- and low-temperature heat pipes, the book compares calculated results with the available experimental data. It also includes a series of computer programs developed by the author to support presented data, aid design, and predict performance.
Nuclear engineers advancing the energy transition are understanding more about the next generation of nuclear plants; however, it is still difficult to access all the critical types, concepts, and applications in one location. Advanced Reactor Concepts (ARC): A New Nuclear Power Plant Perspective Producing Energy gives engineers and nuclear engineering researchers the comprehensive tools to get up to date on the latest technology supporting generation IV nuclear plant systems. After providing a brief history of this area, alternative technology is discussed such as electromagnetic pumps, heat pipes as control devices, Nuclear Air-Brayton Combined Cycles integration, and instrumentation helping nuclear plants to provide dispatchable electricity to the grid and heat to industry. Packed with examples of all the types, benefits, and challenges involved, Advanced Reactor Concepts (ARC) delivers the go-to reference that engineers need to advance safe nuclear energy as a low-carbon option. - Describes theory and concepts on generation IV technology such as advanced reactor concepts (ARC) and electromagnetic pumps, and compares different types and sizes. - Sets out the energy transition with critical carbon-free technology that can supplement intermittent power sources such as wind and solar. - Explains alternative heat storage technology, including Nuclear Air-Brayton Combined Cycles. - Introduces advanced main instrumentation systems for in-core probes.
Presents basic and advanced techniques in the analytical and numerical modeling of various heat pipe systems under a variety of operating conditions and limitations. It describes the variety of complex and coupled processes of heat and mass transfer in heat pipes. The book consists of fourteen chapters, two appendices, and over 400 illustrations, along with numerous references and a wide variety of technical data on heat pipes.
Cryogenic Technology and Applications describes the need for smaller cryo-coolers as a result of the advances in the miniaturization of electrical and optical devices and the need for cooling and conducting efficiency. Cryogenic technology deals with materials at low temperatures and the physics of their behavior at these temps. The book demonstrates the ongoing new applications being discovered for cryo-cooled electrical and optical sensors and devices, with particular emphasis on high-end commercial applications in medical and scientific fields as well as in the aerospace and military industries. This book summarizes the important aspects of cryogenic technology critical to the design and development of refrigerators, cryo-coolers, and micro-coolers needed by various commercial, industrial, space and military systems. Cryogenic cooling plays an important role in unmanned aerial vehicle systems, infrared search and track sensors, missile warning receivers, satellite tracking systems, and a host of other commercial and military systems.* Provides an overview of the history of the development of cryogenic technology* Includes the latest information on micro-coolers for military and space applications* Offers detailed information on high-capacity cryogenic refrigerator systems used in applications such as food storage, high-power microwave and laser sensors, medical diagnostics, and infrared detectors
Heat Pipes, Sixth Edition, takes a highly practical approach to the design and selection of heat pipes, making it an essential guide for practicing engineers and an ideal text for postgraduate students.This new edition has been revised to include new information on the underlying theory of heat pipes and heat transfer, and features fully updated applications, new data sections, and updated chapters on design and electronics cooling. The book is a useful reference for those with experience and an accessible introduction for those approaching the topic for the first time. - Contains all information required to design and manufacture a heat pipe - Suitable for use as a professional reference and graduate text - Revised with greater coverage of key electronic cooling applications
With its unique ability to transfer heat over large distances with minimal loss, the heat pipe has emerged as a proven environmentally friendly, energy-saving solution for passive thermal control. However, until recently, the high cost and complex construction use of these marvelous mechanisms has generally limited their use to space technology. Written by a former senior chief scientist at Lockheed who has also worked for Westinghouse and the U.S Air Force, Heat Pipe Design and Technology: A Practical Approach provides a practical study of modern heat pipe engineering in nuclear and solar energy applications, discussing how it can be optimized and made more cost-effective for use on a wider scale. An introduction to operational and design principles, this book explores the use of heat pipes, particularly in high-heat flux applications and in situations in which there is any combination of non-uniform heat loading, limited airflow over the heat generating components, and space or weight constraints. It also discusses design and application of self-controlled, variable-conductance heat pipes for thermal control in spacecraft. Offering a review of heat and mass transfer theory relevant to performance, the book covers issues that can affect successful heat pipe operation, including: Balancing of heat pipe loads Compatibility of materials Operating temperature range Power limitations Thermal resistance Operating orientation With its presentation of mathematical models to calculate heat transfer limitations and temperature gradient of both high- and low-temperature heat pipes, the book compares calculated results with the available experimental data from various sources to increase confidence in existing models. It also explains where and how readers can access helpful interactive computer codes and a series of computer programs developed by the author to support presented data, aid design, and predict performance.
Heat Transfer in Aerospace Applications is the first book to provide an overall description of various heat transfer issues of relevance for aerospace applications. The book contains chapters relating to convection cooling, heat pipes, ablation, heat transfer at high velocity, low pressure and microgravity, aircraft heat exchangers, fuel cells, and cryogenic cooling systems. Chapters specific to low density heat transfer (4) and microgravity heat transfer (9) are newer subjects which have not been previously covered. The book takes a basic engineering approach by including correlations and examples that an engineer needs during the initial phases of vehicle design or to quickly analyze and solve a specific problem. Designed for mechanical, chemical, and aerospace engineers in research institutes, companies, and consulting firms, this book is an invaluable resource for the latest on aerospace heat transfer engineering and research. - Provides an overall description of heat transfer issues of relevance for aerospace applications - Discusses why thermal problems arise and introduces the various heat transfer modes - Helps solve the problem of selecting and calculating the cooling system, the heat exchanger, and heat protection - Features a collection of problems in which the methods presented in the book can be used to solve these problems
A heat pipe is a self-contained structure which achieves very high thermal conductance by means of two-phase fluid flow with capillary circulation. A quantitative engineering theory for the design and performance analysis of heat pipes is given.
This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation, theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary factors affecting oscillating motions and heat transfer, neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes. The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, graduate students, practicing engineers, researchers, and scientists working in the area of heat pipes. This book also · Includes detailed descriptions on how an oscillating heat pipe is fabricated, tested, and utilized · Covers fundamentals of oscillating flow and heat transfer in an oscillating heat pipe · Provides general presentation of conventional heat pipes