Download Free Functional Relevance Of Tetraspanins In The Immune System Book in PDF and EPUB Free Download. You can read online Functional Relevance Of Tetraspanins In The Immune System and write the review.

Tetraspanins are small (20-50 kDa) integral membrane proteins with four transmembrane domains that have an intrinsic propensity to associate with other membrane proteins and lipids giving rise to the formation of specific tetraspanin-enriched microdomains (TEMs), also referred to as “The tetraspanin web”. In mammals, the tetraspanin family comprises of 33 different members, with the majority of the members being abundantly expressed in almost all cell types, including leukocytes which are responsible for innate and adaptive immunity as well as in other cells that play pivotal roles in immune responses, such as endothelial or stromal cells. Therefore, through the wide range of specific molecular interactions in which they are engaged, tetraspanins influence many processes of up-most relevance in the development, physiology and pathology of the immune system, including the control of immune cell morphology, signaling, adhesion, migration, invasion, fusion, infections and cancer.
In multicellular organisms, communication between cells involves secretion of proteins that bind to receptors on neighboring cells. While this has been well documented, another mode of intercellular communication has recently become the subject of increasing interest: the release of exosomes. In cancer, tumor exosomes are involved in various aspects of pathogenesis, including proliferation, immunosuppression, and metastasis. Given the ability of exosomes to export unneeded endogenous molecules from cells, these structures hold great potential as anticancer therapeutic agents. They are also being studied as prognostic markers for cancer.
Neuronal and Synaptic Dysfunction in Autism Spectrum Disorder and Intellectual Disability provides the latest information on Autism spectrum disorders (ASDs), the lifelong neurodevelopmental disorders that present in early childhood and affect how individuals communicate and relate to others and their surroundings. In addition, three quarters of ASD patients also manifest severe intellectual disability. Though certain genes have been implicated, ASDs remain largely a mystery, and research looking into causes and cellular deficits are crucial for better understanding of neurodevelopmental disorders. Despite the prevalence and insidious nature of this disorder, this book remains to be an extensive resource of information and background on the state of current research in the field. The book serves as a reference for this purpose, and discusses the crucial role synaptic activity plays in proper brain function. In addition, the volume discusses the neurodevelopmental synaptopathies and serves as a resource for scientists and clinicians in all biomedical science specialties. This research has been crucial for recent studies that have provided a rationale for the development of pharmacological agents able to counteract functional synaptic anomalies and potentially ameliorate some ASD symptoms. - Introduces the genetic and non-genetic causes of autism and associated intellectual disabilities - Describes the genes implicated in autistic spectrum disorders and their function - Considers major individual genetic causes of autism, Rett syndrome, Fragile X syndrome, and other autism spectrum disorders, as well as their classification as synaptopathies - Presents a thorough discussion of the clinical aspects of multiple neurodevelopmental disorders and the experimental models that exist to study their pathophysiology in vitro and in vivo, including animal models and patient-derived stem cell culture
This book provides an in-depth overview on the manifold functions of fungal extracellular vesicles (EV) which span from cell-to-cell communication, pathogenicity and stimulation of host’s immunity to export of hundreds of biomolecules. The book summarizes the present knowledge on the impact of extracellular vesicles on fungal biology. Extracellular vesicles participate in fundamental biological processes in all living cells but only during the last 15 years the production and functions of EVs were identified and studied in fungal species too. Up to date more than 50 independent studies have shown that extracellular vesicles are produced by at least 20 fungal species. The book addresses researchers and advanced students in Microbiology, Mycology and Biotechnology.
Nanotechnology-based Targeted Drug Delivery Systems for Lung Cancer is an indispensable resource that will help pharmaceutical scientists and clinical researchers design and develop novel drug delivery systems and devices for the treatment of lung cancer. As recent breakthroughs in nanomedicine are now making it possible to deliver drugs, genes and therapeutic agents to localized areas of disease to maximize clinical benefit, while also limiting unwanted side effects, this book explores promising approaches for the diagnosis and treatment of lung cancer using cutting-edge nanomedical technologies. Topics discussed include polymeric nanoparticles, solid lipid nanoparticles, liposomes, dendrimers, micelles and nanoemulsions. - Provides an overview of an array of nanotechnology-based drug delivery systems - Examines the design, synthesis and application of different nanocarriers in drug and gene delivery - Provides an in-depth understanding of the design of targeted nanotherapeutics and technologies and its implication in various site-specific cancers
Mesenchymal stem cell-derived exosomes are at the forefront of research in two of the most high profile and funded scientific areas – cardiovascular research and stem cells. Mesenchymal Stem Cell Derived Exosomes provides insight into the biofunction and molecular mechanisms, practical tools for research, and a look toward the clinical applications of this exciting phenomenon which is emerging as an effective diagnostic. Primarily focused on the cardiovascular applications where there have been the greatest advancements toward the clinic, this is the first compendium for clinical and biomedical researchers who are interested in integrating MSC-derived exosomes as a diagnostic and therapeutic tool. - Introduces the MSC-exosome mediated cell-cell communication - Covers the major functional benefits in current MSC-derived exosome studies - Discusses strategies for the use of MSC-derived exosomes in cardiovascular therapies
Diagnostic and Therapeutic Applications of Exosomes in Cancer evaluates the potential of exosome content manipulation in the development of novel therapeutics. In recent years, exosomes, the small vesicles produced by all cell types, have been identified as contributors to cancer growth and metastasis. However, due to their unique biophysical properties, they are also being tested for use in therapeutic design and delivery, as well as in diagnostics. This book presents a comprehensive analysis on exosomes, with a main emphasis on their biogenesis and signaling, use as biomarkers, and as tools for imaging, drug delivery and the treatment of cancer.
Virology is in a sense both one of the most important precursors and one of the most significant beneficiaries of structural and cellular molecular biology. Numerous breakthroughs in our understanding of the molecular interactions of viruses with host cells are ready for translation into medically important applications such as the prevention and treatment of viral infections. This book collects a wide variety of examples of frontline research into molecular aspects of viral infections from virological, immunological, cell- and molecular-biological, structural, and theoretical perspectives. - Contributors are world leaders in their fields of study and represent prestigious academic and research institutions - Review articles vary vastly in scope: some focus on a narrowly defined scientific problem of one particular virus with careful introduction for the non-specialist; others are essays in general and comparative virology with forays into specific viral species or molecules - The different perspectives complement each other and collectively the contributions provide an impression of the fast-moving frontlines of virology while showing how the problems have evolved - Structural data are presented through high-quality illustrations
A conformational transition of the cellular prion protein (PrPC) into an aberrantly folded isoform designated scrapie prion protein (PrPSc) is the hallmark of a variety of neurodegenerative disorders collectively called prion diseases. They include Creutzfeldt-Jakob disease and Gerstmann-Stäussler-Scheinker syndrome in humans, scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle and chronic wasting disease (CWD) in free-ranging deer. In contrast to the deadly properties of misfolded PrP, PrPC seems to possess a neuroprotective activity. More-over, animal models indicated that the stress-protective activity of PrPC and the neurotoxic effects of PrPSc are somehow interconnected. In this timely book, leading scientists in the field have come together to highlight the apparently incongruous activities of different PrP conformers. The articles outline current research on celluar pathways implicated in the formation and signaling of neurotoxic and physiological PrP isoforms and delineate future research direction. Topics covered include the physiologcial activity of PrPC and its possible role as a neurotrophic factor, the finding that aberrant PrP conformers can cause neurodegeneration in the absence of infectious prion propagation, the requirement of the GPI anchor of PrPC for the neurotoxic effects of scrapie prions, the pathways implicated in the formation and neurotoxic properties of cytosolically localized PrP, the impact of metal ions on the processing of PrP, and the role of autophagy in the propagation and clearance of PrPSc. The book is fully illustrated and chapters include comprehensive reference sections. Essential reading for scientists involved in prion research.
Current Topics in Membranes