Download Free Functional Materials And Nanotechnology Book in PDF and EPUB Free Download. You can read online Functional Materials And Nanotechnology and write the review.

Nanotechnology and Functional Materials for Engineers focuses on key essentials and examples across the spectrum of nanomaterials as applied by engineers, including nanosensors, smart nanomaterials, nanopolymers, and nanotubes. Chapters cover their synthesis and characteristics, production methods, and applications, with specific sections exploring nanoelectronics and electro-optic nanotechnology, nanostructures, and nanodevices. This book is a valuable resource for interdisciplinary researchers who want to learn more about how nanomaterials are used in different types of engineering, including electrical, chemical, and biomedical. - Offers in-depth information on a variety of nanomaterials and how they are used for different engineering applications - Provides an overview of current research and suggests how this will impact future applications - Explores how the unique properties of different nanomaterials make them particularly suitable for specific applications
This book describes the latest research on nanopolysaccharides in the development of functional materials, from their preparation, properties and functional modifications to the architecture of diverse functional materials. Polysaccharide-based nanoparticles, including nanocellulose, nanochitin, and nanostarch have attracted interest in the field of nanoscience, nanotechnology, and materials science that encompasses various industrial sectors, such as biomedicine, catalyst, coating, energy, optical materials, environmental materials, construction materials, and antibacterial materials. This book establishes a fundamental framework, highlighting the architecture strategies of typical functional systems based on nanopolysaccharides and integrated analysis of their significant influence and properties to various functional behaviors of materials, to help readers to fully understand the fundamental features of nanopolysaccharides and functional materials. Addressing the potential for practical applications, the book also covers the related industrial interests and reports on highly valued products from nanopolysaccharides, providing ideas for future studies in the area. Intended both for academics and professionals who are interested in nanopolysaccharides, it is also a valuable resource for postgraduate students, researchers, and engineers involved in R&D of natural polymers, nanotechnology, and functional materials.
Polymer Science and Nanotechnology: Fundamentals and Applications brings together the latest advances in polymer science and nanoscience. Sections explain the fundamentals of polymer science, including key aspects and methods in terms of molecular structure, synthesis, characterization, microstructure, phase structure and processing and properties before discussing the materials of particular interest and utility for novel applications, such as hydrogels, natural polymers, smart polymers and polymeric biomaterials. The second part of the book examines essential techniques in nanotechnology, with an emphasis on the utilization of advanced polymeric materials in the context of nanoscience. Throughout the book, chapters are prepared so that materials and products can be geared towards specific applications. Two chapters cover, in detail, major application areas, including fuel and solar cells, tissue engineering, drug and gene delivery, membranes, water treatment and oil recovery. - Presents the latest applications of polymers and polymeric nanomaterials, across energy, biomedical, pharmaceutical, and environmental fields - Contains detailed coverage of polymer nanocomposites, polymer nanoparticles, and hybrid polymer-metallic nanoparticles - Supports an interdisciplinary approach, enabling readers from different disciplines to understand polymer science and nanotechnology and the interface between them
Chemistry of Functional Materials Surfaces and Interfaces: Fundamentals and Applications gives a descriptive account of interfacial phenomena step-by-step, from simple to complex, to provide readers with a strong foundation of knowledge in interfacial materials chemistry. Many case studies are provided to give real-world examples of problems and their solutions, allowing readers to make the connection between fundamental understanding and applications. Emerging applications in nanomaterials and nanotechnology are also discussed. Throughout the book, the author explains the common interface and surface equations, models, methods, and applications in the creation of functional materials. The goal of Chemistry of Functional Materials Surfaces and Interfaces is to provide readers with the basic understanding of the common tools of surface and interface chemistry for application in materials science and nanotechnology. This book is suitable for researchers and practitioners in the disciplines of materials science and engineering and surface and interface chemistry. Includes numerous real-world examples and case studies throughout Addresses emerging applications of interfacial materials chemistry in nanomaterials and nanotechnology Provides the foundational concepts of surface and interfacial science with models, equation, and methods
Nanomaterials from Clay Minerals: A New Approach to Green Functional Materials details the structure, properties and modification of natural nanoscale clay minerals and their application as the green constituent of functional materials. Natural nanomaterials from clay minerals have diverse morphologies, from 1D to 3D, including nanorods, nanofibers, nanotubes, nanosheets and nanopores. These structures show excellent adsorption, reinforcing, supporter, electronic, catalytic and biocompatible properties and are great as sustainable alternatives for toxic or expensive artificial materials. This book provides systematic coverage of clay nanomaterials as eco-friendly resources, emphasizing the importance of such materials in a range of industries, including biomedicine, energy and electronics. This book will provide an important reference for materials scientists and engineers who have an interest in sustainable material development. - Presents systematic coverage of a broad range of nanomaterials from clay minerals, including Kaolinite, Smectite and Halloysite - Depicts use cases for each mineral in a variety of applications, such as drug delivery, agriculture, and in the reinforcement of polymer materials - Provides an overview on the advantages and limitations of nanomaterials from clay minerals, as well as chapters on the future potential of such materials
Prompted by the substantial impact of nanoscience and nanotechnology on the diverse materials, metals and minerals being used by over six billion people on the disturbingly overcrowding, increasingly mobile and energy guzzling planet, the author has attempted to produce a readable and comprehensive outline of the physics, chemistry, biology and engineering dimensions and processes relating to the exploitation of various kinds of materials, nanomaterials and nanoparticles, with special reference to carbon-based and silicon-based materials. The study introduces the reader to novel, superfunctional and composite materials, metamaterials, electronics, electrets, carbon nanotubes, nanowires, molecular transistors, and graphene currently attracting research focus. Besides its overall utility for all scientists and engineers, the monograph would serve as a supplementary textbook for advanced courses in several areas of engineering, physics, chemistry, nanotechnology, pharmaceutical biotechnology and biomedicine in traditional universities, engineering colleges, institutes of technology and medical colleges. It is supported by the most up-to-date literature citations, of direct interest to researchers on materials science and nanotechnology.
Nanotechnology and high-end characterization techniques have highlighted the importance of the material choice for the success of tissue engineering. A paradigm shift has been seen from conventional passive materials as scaffolds to smart multi-functional materials that can mimic the complex intracellular milieu more effectively. This book presents a detailed overview of the rationale involved in the choice of materials for regeneration of different tissues and the future directions in this fascinating area of materials science with specific chapters on regulatory challenges & ethics; tissue engineered medical products.
As the environmental impact of existing construction and building materials comes under increasing scrutiny, the search for more eco-efficient solutions has intensified. Nanotechnology offers great potential in this area and is already being widely used to great success. Nanotechnology in eco-efficient construction is an authoritative guide to the role of nanotechnology in the development of eco-efficient construction materials and sustainable construction.Following an introduction to the use of nanotechnology in eco-efficient construction materials, part one considers such infrastructural applications as nanoengineered cement-based materials, nanoparticles for high-performance and self-sensing concrete, and the use of nanotechnology to improve the bulk and surface properties of steel for structural applications. Nanoclay-modified asphalt mixtures and safety issues relating to nanomaterials for construction applications are also reviewed before part two goes on to discuss applications for building energy efficiency. Topics explored include thin films and nanostructured coatings, switchable glazing technology and third generation photovoltaic (PV) cells, high-performance thermal insulation materials, and silica nanogel for energy-efficient windows. Finally, photocatalytic applications are the focus of part three, which investigates nanoparticles for pollution control, self-cleaning and photosterilisation, and the role of nanotechnology in manufacturing paints and purifying water for eco-efficient buildings.Nanotechnology in eco-efficient construction is a technical guide for all those involved in the design, production and application of eco-efficient construction materials, including civil engineers, materials scientists, researchers and architects within any field of nanotechnology, eco-efficient materials or the construction industry. - Provides an authoritative guide to the role of nanotechnology in the development of eco-efficient construction materials and sustainable construction - Examines the use of nanotechnology in eco-efficient construction materials - Considers a range of important infrastructural applications, before discussing applications for building energy efficiency
Environmental Functional Nanomaterials covers the molecular structure and properties of nanomaterials used to remove refractory pollutants from industrial wastewaters and the environment with high efficiency. Insights into the innovations in the production of these new nanomaterials are provided. This book is ideal for career starters and students of materials science, environmental science, and chemistry.
Lignin is one of the most abundant plant-derived feedstock on earth and qualifies as a renewable material. However, lignin is widely recognized as waste byproduct of the cellulosic ethanol and pulp and paper industry. How to properly modify lignin and develop it into functional polymers is a huge challenge, but an attractive research topic in both industry and academia.This book brings together leading engineering approaches to address the challenges of lignin valorization. It presents the chemistry and properties of different types of lignin, and explores the cutting-edge approaches of lignin modifications. Unlike any existing texts, this book not only summarizes the traditional ways of using lignin, but also presents various potential applications of lignin materials together with advanced processing techniques.The basis of lignin (its chemistry, types and properties) is described, as are different approaches to modify it. The features of lignin and its copolymers are explored and aligned with their potential applications. In addition to the carbon materials from lignin, the advanced fabrication approaches to engineer lignin-based micro/nano-structural materials are summarized.