Download Free Functional Materials And Additive Manufacturing Book in PDF and EPUB Free Download. You can read online Functional Materials And Additive Manufacturing and write the review.

Special topic volume with invited peer-reviewed papers only
This three-volume set addresses a new knowledge of function materials, their processing, and their characterizations. "Functional and Smart Materials", covered the synthesis and fabrication route of functional and smart materials for universal applications such as material science, mechanical engineering, manufacturing, metrology, nanotechnology, physics, chemical, biology, chemistry, civil engineering, and food science. "Advanced Manufacturing and Processing Technology" covers the advanced manufacturing technologies includes coating, deposition, cladding, nanotechnology, surface finishing, precision machining, processing, and emerging advanced manufacturing technologies for processing of materials for functional applications. "Characterization, Testing, Measurement and Metrology" covered the application of new and advanced characterization techniques to investigate and analysis the processed materials.
Powder-based materials and treatment technologies rank high in contemporary scientific-technical progress due to their numerous significant technoeconomic qualities. Sintering of such materials allows saving on materials and lowering the cost price of the product, as well as manufacturing complex composite materials with unique combinations of qualities. Materials of record high values of some physic-mechanical and also biochemical characteristics can be obtained owing to structural peculiarities of super dispersed condition. Sintering of functional materials for innovative perspectives in automotive and aeronautical engineering, space technology, lightweight construction, mechanical engineering, modern design, and many other applications requires established relationship in the materials-process-properties system. Therefore, the industry being interested in understanding theoretical modeling, and control over behavior of such powdered materials has promoted the research activities of this manuscript's authors.
This book provides a solid background for understanding the immediate past, the ongoing present, and the emerging trends of additive manufacturing, with an emphasis on innovations and advances in its use for a wide spectrum of manufacturing applications. It contains contributions from leading authors in the field, who view the research and development progress of additive manufacturing techniques from the unique angle of developing high-performance composites and other complex material parts. It is a valuable reference book for scientists, engineers, and entrepreneurs who are seeking technologically novel and economically viable innovations for high-performance materials and critical applications. It can also benefit graduate students and post-graduate fellows majoring in mechanical, manufacturing, and material sciences, as well as biomedical engineering.
3D PRINTING FOR ENERGY APPLICATIONS Explore current and future perspectives of 3D printing for the fabrication of high value-added complex devices 3D Printing for Energy Applications delivers an insightful and cutting-edge exploration of the applications of 3D printing to the fabrication of complex devices in the energy sector. The book covers aspects related to additive manufacturing of functional materials with applicability in the energy sector. It reviews both the technology of printable materials and 3D printing strategies itself, and its use in energy devices or systems. Split into three sections, the book covers the 3D printing of functional materials before delving into the 3D printing of energy devices. It closes with printing challenges in the production of complex objects. It also presents an interesting perspective on the future of 3D printing of complex devices. Readers will also benefit from the inclusion of: A thorough introduction to 3D printing of functional materials, including metals, ceramics, and composites An exploration of 3D printing challenges for production of complex objects, including computational design, multimaterials, tailoring AM components, and volumetric additive manufacturing Practical discussions of 3D printing of energy devices, including batteries, supercaps, solar panels, fuel cells, turbomachinery, thermoelectrics, and CCUS Perfect for materials scientists, 3D Printing for Energy Applications will also earn a place in the libraries of graduate students in engineering, chemistry, and material sciences seeking a one-stop reference for current and future perspectives on 3D printing of high value-added complex devices.
Laser Additive Manufacturing: Materials, Design, Technologies, and Applications provides the latest information on this highly efficient method of layer-based manufacturing using metals, plastics, or composite materials. The technology is particularly suitable for the production of complex components with high precision for a range of industries, including aerospace, automotive, and medical engineering. This book provides a comprehensive review of the technology and its range of applications. Part One looks at materials suitable for laser AM processes, with Part Two discussing design strategies for AM. Parts Three and Four review the most widely-used AM technique, powder bed fusion (PBF) and discuss other AM techniques, such as directed energy deposition, sheet lamination, jetting techniques, extrusion techniques, and vat photopolymerization. The final section explores the range of applications of laser AM. - Provides a comprehensive one-volume overview of advances in laser additive manufacturing - Presents detailed coverage of the latest techniques used for laser additive manufacturing - Reviews both established and emerging areas of application
Scaffold bone replacements are a safe and effective way to cure bone abnormalities, and porous scaffolds can be manufactured using additive manufacturing technology. When scaffolds are implanted in a damaged location, they quickly connect to the host tissue and integrate, stimulating bone production and development. The qualities of porous titanium must be matched to the properties of human bones (i.e., age, sex, and hormones). Using subtractive manufacturing, it is extremely difficult to create the complicated porous structure necessary for the desired characteristic. The Handbook of Research on Advanced Functional Materials for Orthopedic Applications highlights current research pertinent to the orthopedic applications of additive-produced scaffolds in order to consider the latest breakthroughs in the synthesis and multifunctional applications of scaffolds. Covering key topics such as tissue, additive manufacturing, and biomaterial, this major reference work is ideal for industry professionals, engineers, researchers, academicians, practitioners, scholars, instructors, and students.
This book presents a comprehensive and broad-spectrum picture of the state-of-the-art research, development, and commercial prospective of various discoveries conducted in the real world of functional and smart materials. This book presents various synthesis and fabrication routes of function and smart materials for universal applications such as material science, mechanical engineering, manufacturing, metrology, nanotechnology, physics, biology, chemistry, civil engineering, and food science. The content of this book opens various scientific horizons proved to be beneficial for uplifting the standards of day-to-day practices in the biomedical domain. Myriad innovations in the materials science and engineering are transforming our everyday lives in extraordinary ways. This book captures the emerging areas of materials science and advanced manufacturing engineering and presents recent trends in research for researchers, field engineers, and academic professionals.
Functional materials are important materials for any technological needs and the forefront of materials research. Development of functional materials and their effective applications in the frontier fields of cross-multidisciplinary research programs is unique. This book presents an overview of different types of functional materials, including synthesis, characterization and application, and up-to-date treatment of functional materials, which are needed for structural, magnetic, polymeric, electromagnetic, etc. applications. New topics based on polymeric materials and spintronic materials are given for possible applications. The chapters of the book provide a key understanding of functional materials. It is suitable for undergraduates, graduates, and professionals, including engineers, scientists, researchers, technicians, and technology managers.
In this book, basic sciences and applied technologies in 3D printing and 2D coating—including 2D surface modulations on 3D printed objects—are described to explore and to image novel multidimensional additive manufacturing. Renowned researchers were selected from universities and national institutes as authors by the editorial board established in the Surface Modification Research and Technology Committee of the Japan Welding Engineering Society. The main readers of this book are expected to be graduate students, professional researchers, and engineers. Here, they can acquire abundant knowledge of digital design concepts and functional evaluations, enabling them practice material selection and process parameter optimization in novel additive manufacturing.