Download Free Functional Inequalities Markov Semigroups And Spectral Theory Book in PDF and EPUB Free Download. You can read online Functional Inequalities Markov Semigroups And Spectral Theory and write the review.

In this book, the functional inequalities are introduced to describe:(i) the spectrum of the generator: the essential and discrete spectrums, high order eigenvalues, the principle eigenvalue, and the spectral gap;(ii) the semigroup properties: the uniform intergrability, the compactness, the convergence rate, and the existence of density;(iii) the reference measure and the intrinsic metric: the concentration, the isoperimetic inequality, and the transportation cost inequality.
The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincaré, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations. The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.
For the first time in book form, Analytical Methods for Markov Semigroups provides a comprehensive analysis on Markov semigroups both in spaces of bounded and continuous functions as well as in Lp spaces relevant to the invariant measure of the semigroup. Exploring specific techniques and results, the book collects and updates the literature associated with Markov semigroups. Divided into four parts, the book begins with the general properties of the semigroup in spaces of continuous functions: the existence of solutions to the elliptic and to the parabolic equation, uniqueness properties and counterexamples to uniqueness, and the definition and properties of the weak generator. It also examines properties of the Markov process and the connection with the uniqueness of the solutions. In the second part, the authors consider the replacement of RN with an open and unbounded domain of RN. They also discuss homogeneous Dirichlet and Neumann boundary conditions associated with the operator A. The final chapters analyze degenerate elliptic operators A and offer solutions to the problem. Using analytical methods, this book presents past and present results of Markov semigroups, making it suitable for applications in science, engineering, and economics.
In pioneering work in the 1950s, S. Karlin and J. McGregor showed that probabilistic aspects of certain Markov processes can be studied by analyzing orthogonal eigenfunctions of associated operators. In the decades since, many authors have extended and deepened this surprising connection between orthogonal polynomials and stochastic processes. This book gives a comprehensive analysis of the spectral representation of the most important one-dimensional Markov processes, namely discrete-time birth-death chains, birth-death processes and diffusion processes. It brings together the main results from the extensive literature on the topic with detailed examples and applications. Also featuring an introduction to the basic theory of orthogonal polynomials and a selection of exercises at the end of each chapter, it is suitable for graduate students with a solid background in stochastic processes as well as researchers in orthogonal polynomials and special functions who want to learn about applications of their work to probability.
This research monograph gives a detailed account of a theory which is mainly concerned with certain classes of degenerate differential operators, Markov semigroups and approximation processes. These mathematical objects are generated by arbitrary Markov operators acting on spaces of continuous functions defined on compact convex sets; the study of the interrelations between them constitutes one of the distinguishing features of the book. Among other things, this theory provides useful tools for studying large classes of initial-boundary value evolution problems, the main aim being to obtain a constructive approximation to the associated positive C0-semigroups by means of iterates of suitable positive approximating operators. As a consequence, a qualitative analysis of the solutions to the evolution problems can be efficiently developed. The book is mainly addressed to research mathematicians interested in modern approximation theory by positive linear operators and/or in the theory of positive C0-semigroups of operators and evolution equations. It could also serve as a textbook for a graduate level course.
The NATO Advanced Study Institute "Microlocal Analysis and Spectral The ory" was held in Tuscany (Italy) at Castelvecchio Pascoli, in the district of Lucca, hosted by the international vacation center "11 Ciocco" , from September 23 to October 3, 1996. The Institute recorded the considerable progress realized recently in the field of Microlocal Analysis. In a broad sense, Microlocal Analysis is the modern version of the classical Fourier technique in solving partial differential equa tions, where now the localization proceeding takes place with respect to the dual variables too. Precisely, through the tools of pseudo-differential operators, wave-front sets and Fourier integral operators, the general theory of the lin ear partial differential equations is now reaching a mature form, in the frame of Schwartz distributions or other generalized functions. At the same time, Microlocal Analysis has grown up into a definite and independent part of Math ematical Analysis, with other applications all around Mathematics and Physics, one major theme being Spectral Theory for Schrodinger equation in Quantum Mechanics.