Download Free Functional Glycomics Book in PDF and EPUB Free Download. You can read online Functional Glycomics and write the review.

Sugar chains (glycans) are often attached to proteins and lipids and have multiple roles in the organization and function of all organisms. "Essentials of Glycobiology" describes their biogenesis and function and offers a useful gateway to the understanding of glycans.
A new focus on glycoscience, a field that explores the structures and functions of sugars, promises great advances in areas as diverse as medicine, energy generation, and materials science, this report finds. Glycans-also known as carbohydrates, saccharides, or simply as sugars-play central roles in many biological processes and have properties useful in an array of applications. However, glycans have received little attention from the research community due to a lack of tools to probe their often complex structures and properties. Transforming Glycoscience: A Roadmap for the Future presents a roadmap for transforming glycoscience from a field dominated by specialists to a widely studied and integrated discipline, which could lead to a more complete understanding of glycans and help solve key challenges in diverse fields.
In this 3 volume collection focusing on glycomics, readers will appreciate how such discoveries were made and how such methods can be applied for readers' own research efforts - Each chapter has been designed so that enough scientific background will be given in each chapter for further development of methods by readers themselves - Useful for all levels of scientists starting from the last years of colleges, graduate students, postdoctoral fellows to professors and to all levels of scientists in research institutes including industry
This volume provides a comprehensive understanding of the enigmatic identity of the glycome, a complex but important area of research that has been largely ignored due to its complexity. The authors thoroughly deal with almost all aspects of the glycome, i.e., elucidation of the glycan identity enigma and its role in regulation of the cellular process, and in disease etiology. The book bridges the knowledge gap in understanding the glycome, from being a cell signature to its applications in disease etiology. In addition, it details many of the major insights regarding the possible role of the glycome in various diseases as a therapeutic marker. The book systematically covers the major aspects of the glycome, including the significance of substituting the diverse monosaccharide units to glycoproteins, the role of glycans in disease pathologies, and the challenges and advances in glycobiology. The authors stress the significance and huge encoding power of carbohydrates as well as provide helpful insights in framing the bigger picture. The Glycome: Understanding the Diversity and Complexity of Glycobiology details state-of-the-art developments and emerging challenges of glycome biology, which are going to be key areas of future research, not only in the glycobiology field but also in pharmaceutics.
The Handbook of Glycomics provides the first comprehensive overview of the emerging field of glycomics, defined as the study of all complex carbohydrates in an organism or cell ("the glycome"). Beginning with analytic approaches and bioinformatics, this work provides a detailed discussion of relevant databases, data integration, and analysis. It then moves on to a discussion of specific model organism and pathogen glycomes followed by therapeutic approaches to human disorders of glycosylization. Structure and function of glycomes are included along with state-of-the-art technologies and systems approaches to the analysis of glycans. - Synthesizes contributions from experts in biology, chemistry, bioinformatics, biotechnology, and medicine - Highlights chapters devoted to chemical synthesis, cancer glycomics and immune cell glycomics - Includes discussions of proteomics, mass spectrometry, NMR, array technology, and transcriptomics analytic approaches
This book provides current glycoinformatics methods and protocols used to support the determination of carbohydrate structures in biological samples as well as carbohydrate structure databases, the interaction of carbohydrates with proteins, and theoretical and experimental methods to study their three-dimensional structure and dynamics. Glycoinformatics explores this recently emerged field, which has come into being in order to address the needs of encoding, storing, and analyzing carbohydrate ‘sequences’ and their taxonomy using computers. Written in the highly successful Methods in Molecular Biology series format, chapters contain the kind of detailed description and key implementation advice to ensure successful results. Authoritative and timely, Glycoinformatics demonstrates the progress that has been achieved in glycoinformatics, which indicates that it is no longer a niche subject covered by only a few scientists but is truly coming of age.
Due to the significant contributions of carbohydrates to the functional diversity of the cell, the challenging study of the glycome has expanded beyond the research of carbohydrate experts and into the wider scope of the life sciences. To aid all scientists now delving into this vital subject area, Glycomics: Methods and Protocols collects a compendium of detailed laboratory protocols reflecting the increasing availability of sample preparation, chromatographic, electrophoretic, mass spectrometric, and bioinformatic tools specifically designed for the analysis of glycosylation. Leading researchers in the field address subjects such as glycoprotein and proteoglycan analysis, glycosylation structure determination, as well as various approaches to investigate the interaction between glycans and a variety of carbohydrate-recognizing proteins in order to aid exploration into the functional significance of the oligosaccharides. Written in the highly successful Methods in Molecular BiologyTM series format, the chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and notes on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Glycomics: Methods and Protocols serves as a valuable guide for experimenters facing the challenges of glycan analysis in hope of providing further insights into the biology of cell-cell communication and interaction.
Glycans play essential roles in diverse biological and etiological processes and their structural complexity endow various functions. The glycome is the entire set of glycans produced by an individual organism. As the glycan microarray emerged, a good amount of knowledge has been obtained in understanding the functions of glycans. However, limited accessibility of glycans is a major obstacle to the functional glycomics study. Although isolation from biology samples provided some structures, the low abundance of glycans obtained and the difficulty in complete structural assignment restricted the subsequent assay. To circumvent this limitation, many synthetic strategies, including chemical, enzymatic and chemo-enzymatic ones have been developed to make libraries of structurally defined complex glycans available. The glycans provided by these techniques combined with high-throughput glycoarray techniques have broadened and deepened our understanding about functional glycomics. The aim of this book is to provide a comprehensive review of the current state of the synthetic glycome and a brief introduction of the application of the synthetic glycome in glycoarray assay. Accordingly, synthetic strategies toward generating glycans with comprehensive structures as well as the glycoarrays to unveil the glycan functions are described in this book.
This book is the first to be dedicated to the bioinformatics of carbohydrates and glycoproteins. It provides an introduction to this emerging field of science both for the experimentalist working in glycobiology and glycomics, and also for the computer scientist looking for background information for the development of highly sophisticated algorithmic approaches. The book provides an overview of the state-of-the-art in the field, with reviews on databases, and the tools in use for analysis, interpretation, and prediction of the structures of complex carbohydrates, and demonstrates the value of bioinformatics for glycobiology. The availability of comprehensive databases and corresponding bioinformatics tools, to access and analyse the large amounts of experimental data relating to the structure of carbohydrates, will be a prerequisite for the success of the large-scale glycomics projects that aim to decipher new, so far unknown, biological functions of glycans. Efficient bioinformatics descriptions and tools can considerably enhance the efficiency of glycomics research, in terms of data quality, analysis and experimental costs. For a complete understanding of the molecular processes in which carbohydrates are involved, such as protein–carbohydrate interactions and the impact of glycosylation on protein function, knowledge of the 3D structure of the carbohydrate, the protein–carbohydrate complex, or the glycoprotein is often indispensable. This book provides a thorough introduction into methods used for conformational analysis of carbohydrates. Key features: Describes bioinformatic approaches to handle carbohydrate-active enzymes and glycosylation. Provides an overview on bioinformatics tools that facilitate analysis of carbohydrate structures. Gives introduction into molecular modelling of carbohydrate 3D structure and carbohydrates contained in the Protein Databank. Assumes only a basic knowledge of biology and bioinformatics.
The so-called postgenomic research era has now been launched, and the field of gly cobiology and glycotechnology has become one of the most important areas in life science because glycosylation is the most common post-translational modification reaction of proteins in vivo. On the basis of Swiss-Prot data, over 50% proteins are known to undergo glycosylation, but in fact the actual functions of most of the sugar chains in the glycoconjugates remain unknown. The complex carbohydrate chains of glycoproteins, glycolipids, and proteoglycans represent the secondary gene products formed through the reactions of glycosyl transferases. The regulation of the biosynthesis of sugar chains is under the control of the expression of glycosyltransferases, their substrate specificity, and their local ization in specific tissue sites. There is a growing body of evidence to suggest that these enzymes play pivotal roles in a variety of important cellular differentiation and developmental events, as well as in disease processes. Over 300 glycosyltransferases appear to exist in mammalian tissues. If the genes that have been purified and cloned from various species such as humans, cattle, pigs, rats and mice are counted as one, approximately 110 glycogenes that encode glycosyltransferases and related genes have been cloned at present, and this number continues to grow each day. However, most of the functions of the glycosyltransferase genes and related genes are unknown. This fact has stimulated numerous new and interesting approaches in molecular biologi cal investigations.