Download Free Functional Design Errors In Digital Circuits Book in PDF and EPUB Free Download. You can read online Functional Design Errors In Digital Circuits and write the review.

Functional Design Errors in Digital Circuits Diagnosis covers a wide spectrum of innovative methods to automate the debugging process throughout the design flow: from Register-Transfer Level (RTL) all the way to the silicon die. In particular, this book describes: (1) techniques for bug trace minimization that simplify debugging; (2) an RTL error diagnosis method that identifies the root cause of errors directly; (3) a counterexample-guided error-repair framework to automatically fix errors in gate-level and RTL designs; (4) a symmetry-based rewiring technology for fixing electrical errors; (5) an incremental verification system for physical synthesis; and (6) an integrated framework for post-silicon debugging and layout repair. The solutions provided in this book can greatly reduce debugging effort, enhance design quality, and ultimately enable the design and manufacture of more reliable electronic devices.
The Best of ICCAD marks the 20th anniversary of the International Conference on Computer Aided Design. This book presents a selection of papers from among the best contributions presented in ICCAD based on their impact on research and applications. The Best of ICCAD contains overview articles solicited from leading EDA researchers that comment on the historical context of the selected papers and outline their impact on follow up work. Nine leading companies including Cadence, Synopsys, Fujitsu, IBM and Magma offer "Industry Viewpoints" outlining the impact of ICCAD on their businesses. The Best of ICCAD provides an insightful reminder on how much progress has been made in EDA in the past twenty years and will be a useful tool for professionals in the field and students in the pursuit to crack the next wave of emerging EDA problems.
Radio Monitoring: Problems, Methods, and Equipment offers a unified approach to fundamental aspects of Automated Radio Monitoring (ARM). The authors discuss the development, modeling, design, and manufacture of ARM systems. Data from established and recent research are presented and recommendations are made on methods and approaches for solving common problems in ARM. The authors also provide classification and detailed descriptions of modern high-efficient hardware-software ARM equipment, including the equipment for detection, radio direction-finding, parameters measurement and their analysis, and the identification and localization of the electromagnetic field sources. Examples of ARM equipment structure, applications, and software are provided to manage a variety of complicated interference environment in the industrial centers, inside of the buildings, and in the open terrain. This book provides a reference for professionals and researchers interested in deploying ARM technology as a tool for solving problems from radio frequency spectrum usage control.
Recent Advances in Numerical Methods features contributions from distinguished researchers, focused on significant aspects of current numerical methods and computational mathematics. The increasing necessity to present new computational methods that can solve complex scientific and engineering problems requires the preparation of this volume with actual new results and innovative methods that provide numerical solutions in effective computing times. Each chapter will present new and advanced methods and modern variations on known techniques that can solve difficult scientific problems efficiently.
The two-volume set LNCS 12013 and 12014 constitutes the thoroughly refereed proceedings of the 17th International Conference on Computer Aided Systems Theory, EUROCAST 2019, held in Las Palmas de Gran Canaria, Spain, in February 2019. The 123 full papers presented were carefully reviewed and selected from 172 submissions. The papers are organized in the following topical sections: Part I: systems theory and applications; pioneers and landmarks in the development of information and communication technologies; stochastic models and applications to natural, social and technical systems; theory and applications of metaheuristic algorithms; model-based system design, verification and simulation. Part II: applications of signal processing technology; artificial intelligence and data mining for intelligent transportation systems and smart mobility; computer vision, machine learning for image analysis and applications; computer and systems based methods and electronic technologies in medicine; advances in biomedical signal and image processing; systems concepts and methods in touristic flows; systems in industrial robotics, automation and IoT.
This book provides readers with a comprehensive, state-of-the-art overview of approximate computing, enabling the design trade-off of accuracy for achieving better power/performance efficiencies, through the simplification of underlying computing resources. The authors describe in detail various efforts to generate approximate hardware systems, while still providing an overview of support techniques at other computing layers. The book is organized by techniques for various hardware components, from basic building blocks to general circuits and systems.
Hardware veri?cation is the process of checking whether a design conforms to its speci?cations of functionality and timing. In today’s design processes it becomes more and more important. Very large scale integrated (VLSI) circuits and the resulting digital systems have conquered a place in almost all areas of our life, even in security sensitive applications. Complex digital systems control airplanes, have been used in banks and on intensive-care units. Hence, the demand for error-free designs is more important than ever. In addition, economic reasons underline this demand as well. The design and production process of present day VLSI-circuits is highly time- and cost-intensive. Mo- over, it is nearly impossible to repair integrated circuits. Thus, it is desirable to detect design errors early in the design process and not just after producing the prototype chip. All these facts are re?ected by developing and prod- tion statistics of present day companies. For example, In?neon Technologies [118] assumed that about 60% to 80% of the overall design time was spent for veri?cation in 2000. Other sources cite the 3-to-1 head count ratio between veri?cation engineers and logic designers. This shows that verifying logical correctness of the design of hardware systems is a major gate to the problem of time-to-market (cf. [113]). With the chip complexity constantly increasing, the dif?culty as well as the - portance of functional veri?cation of new product designs has been increased. It is not only more important to get error-free designs.
Practical Design of Digital Circuits: Basic Logic to Microprocessors demonstrates the practical aspects of digital circuit design. The intention is to give the reader sufficient confidence to embark upon his own design projects utilizing digital integrated circuits as soon as possible. The book is organized into three parts. Part 1 teaches the basic principles of practical design, and introduces the designer to his ""tools"" — or rather, the range of devices that can be called upon. Part 2 shows the designer how to put these together into viable designs. It includes two detailed descriptions of actual design exercises. The first of these is a fairly simple exercise in CMOS design; the second is a much more complex design for an electronic game, using TTL devices. Part 3 focuses on microprocessors. It illustrates how a particular design problem changes emphasis when a microprocessor is introduced. This book is aimed at a fairly broad market: it is intended to aid the linear design engineer to cross the barrier into digital electronics; it should provide interesting supporting reading for students studying digital electronics from the more academic viewpoint; and it should enable the enthusiast to design much more ambitious and sophisticated projects than he could otherwise attempt if restricted to linear devices.
System-on-Chip Methodologies & Design Languages brings together a selection of the best papers from three international electronic design language conferences in 2000. The conferences are the Hardware Description Language Conference and Exhibition (HDLCon), held in the Silicon Valley area of USA; the Forum on Design Languages (FDL), held in Europe; and the Asia Pacific Chip Design Language (APChDL) Conference. The papers cover a range of topics, including design methods, specification and modeling languages, tool issues, formal verification, simulation and synthesis. The results presented in these papers will help researchers and practicing engineers keep abreast of developments in this rapidly evolving field.
Overview This course deals with everything you need to know to become a successful IT Consultant. Content - Business Process Management - Human Resource Management - IT Manager's Handbook - Principles of Marketing - The Leadership - Information Systems and Information Technology - IT Project Management Duration 12 months Assessment The assessment will take place on the basis of one assignment at the end of the course. Tell us when you feel ready to take the exam and we’ll send you the assignment questions. Study material The study material will be provided in separate files by email / download link.