Download Free Functional Anatomy Of Visual Processing In The Cerebral Cortex Of The Macaque Book in PDF and EPUB Free Download. You can read online Functional Anatomy Of Visual Processing In The Cerebral Cortex Of The Macaque and write the review.

In this thesis, we examined the monkey cortical regions involved in processing of color, visual motion information, and the recognition of actions done by others. The aim was to gain better insight in the functional organization of the monkey visual cortex using in-house developed functional imaging techniques. Two different functional imaging techniques were used in these studies, the double-label deoxyglucose technique (DG) and functional magnetic resonance imaging (fMRI) in the awake monkey (Chapter 2). Both techniques allow to obtain an overview of stimulus-related neural activity throughout the whole brain, integrated over a limited amount of time. The results of the color experiments (Chapter 3) clearly showed that color related information is processed within a group of areas belonging to the ventral stream, which is involved in the perception of objects. Color-related metabolic activity was observed in visual areas V1, V2, V3, V4 and inferotemporal cortex (area TEO and TE). These findings set to rest the longstanding controversial claims that color would be processed almost selectively in one extrastriate visual area (V4) (Zeki SM, Brain Res 1973 53: 422-427). These results also show the usefulness of whole brain functional mapping techniques, as a complimentary approach to single cell measurements. In Chapter 4, we investigated which regions in the superior temporal sulcus (STS) of the monkey are involved in the analysis of motion. While the caudal part of the STS has been studied extensively, including area MT/V5 and MST, little is known about motion sensitivity in more anterior-ventral STS regions. Using fMRI, we were able to localize and delineate six different motion sensitive regions in the STS. One of these regions, that we termed 1st (lower superior temporal), had not been described so far. We were able to further characterize the six motion sensitive regions, using a wide variety of motion-sensitivity tests. The results of the latter tests suggested that motion related information might be processed along a second pathway within the STS, in addition to the MT-MST path (which is involved in the perception of heading). This second pathway, which includes the more rostral motion sensitive STS regions (FST, 1st and STPm) is possibly involved in the visual processing of biological movements (movements of animate objects) and actions. Finally, we investigated how and where in the monkey brain visual information about actions done is processed (Chapter 5 and 6). We found (Chapter 5) that, in agreement with earlier single unit results, the observation of grasping movements activates several regions in the premotor cortex of the monkey. Remarkable is that these premotor regions predominantly have a motor function, coding different types of higher order motor acts (for instance grasping of an object). These results are in agreement with earlier suggestions that we are able to understand actions done by others, because observation of a particular motor act activates our own motor representation of the same act. Furthermore, these studies suggested that within the frontal cortex of the monkey, there is a distinction between context-dependent (a person grasping) and more abstract (a hand grasping) action representations. In Chapter 6 we studied two other regions which are involved in the processing of visual information of actions done by others, the superior temporal sulcus (STS) and the parietal cortex. In the parietal cortex, we found a similar distinction between context-dependent and more abstract action representations as observed in prefrontal cortex. These results suggest that the parietal cortex is not only involved in the visual control of action planning, but also in the visual processing of actions performed by others. Based upon anatomical connections between the STS, parietal and frontal regions and motion-, form- and action-related functional properties of the former regions, we tentatively suggest how information about actions done by others might be sent from the STS to the frontal cortex along three different pathways. The latter working hypothesis will be tested in the future by additional fMRI control experiments and by combining fMRI, inactivation and microstimulation experiments while monkeys perform grasping tasks and/or view actions performed by others.
This book has brought together leading investigators who work in the new arena of brain connectomics. This includes ‘macro-connectome’ efforts to comprehensively chart long-distance pathways and functional networks; ‘micro-connectome’ efforts to identify every neuron, axon, dendrite, synapse, and glial process within restricted brain regions; and ‘meso-connectome’ efforts to systematically map both local and long-distance connections using anatomical tracers. This book highlights cutting-edge methods that can accelerate progress in elucidating static ‘hard-wired’ circuits of the brain as well as dynamic interactions that are vital for brain function. The power of connectomic approaches in characterizing abnormal circuits in the many brain disorders that afflict humankind is considered. Experts in computational neuroscience and network theory provide perspectives needed for synthesizing across different scales in space and time. Altogether, this book provides an integrated view of the challenges and opportunities in deciphering brain circuits in health and disease.
The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."
Brain Warping is the premier book in the field of brain mapping to cover the mathematics, physics, computer science, and neurobiological issues related to brain spatial transformation and deformation correction. All chapters are organized in a similar fashion, covering the history, theory, and implementation of the specific approach discussed for ease of reading. Each chapter also discusses the computer science implementations, including descriptions of the programs and computer codes used in its execution. Readers of Brain Warping will be able to understand all of the approaches currently used in brain mapping, incorporating multimodality, and multisubject comparisons.Key Features* The only book of its kind* Subject matter is the fastest growing area in the field of brain mapping* Presents geometrically-based approaches to the field of brain mapping* Discusses intensity-based approaches to the field of brain mapping
Clinical neuropsychology is a rapidly evolving specialty whose practitioners serve patients with traumatic brain injury, stroke and other vascular impairments, brain tumors, epilepsy and nonepileptic seizure disorders, developmental disabilities, progressive neurological disorders, HIV- and AIDS-related disorders, and dementia. . Services include evaluation, treatment, and case consultation in child, adult, and the expanding geriatric population in medical and community settings. The clinical goal always is to restore and maximize cognitive and psychological functioning in an injured or compromised brain. Most neuropsychology reference books focus primarily on assessment and diagnosis, and to date none has been encyclopedic in format. Clinicians, patients, and family members recognize that evaluation and diagnosis is only a starting point for the treatment and recovery process. During the past decade there has been a proliferation of programs, both hospital- and clinic-based, that provide rehabilitation, treatment, and treatment planning services. This encyclopedia will serve as a unified, comprehensive reference for professionals involved in the diagnosis, evaluation, and rehabilitation of adult patients and children with neuropsychological disorders.
The last 20 years of research have been marked by exceptional progress in understanding the organization and functions of the primate visual system. This understanding has been based on the wide application of traditional and newly emerging methods for identifying the functionally significant subdivisions of the system, their interconnections, the
This presentation of the foremost research and theory from disciplines that provide the foundations of neural network research--neurobiology, physics, computer science, electrical engineering, mathematics, and psychology--shows how neural networks and neurocomputing represent radical departures from conventional approaches to digital computers, in terms of algorithms and architecture.
While the brain is ruled to a large extent by chemical neurotransmitters, it is also a bioelectric organ. The collective study of Quantitative ElectroEncephaloGraphs (QEEG-the conversion of brainwaves to digital form to allow for comparison between neurologically normative and dysfunctional individuals), Event Related Potentials (ERPs - electrophysiological response to stimulus) and Neurotherapy (the process of actually retraining brain processes to) offers a window into brain physiology and function via computer and statistical analyses of traditional EEG patterns, suggesting innovative approaches to the improvement of attention, anxiety, mood and behavior.The volume provides detailed description of the various EEG rhythms and ERPs, the conventional analytic methods such as spectral analysis, and the emerging method utilizing QEEG and ERPs. This research is then related back to practice and all existing approaches in the field of Neurotherapy - conventional EEG-based neurofeedback, brain-computer interface, transcranial Direct Current Stimulation, and Transcranial Magnetic Stimulation - are covered in full. While it does not offer the breadth provided by an edited work, this volume does provide a level of depth and detail that a single author can deliver, as well as giving readers insight into the personl theories of one of the preeminent leaders in the field. - Provide a holistic picture of quantitative EEG and event related potentials as a unified scientific field - Present a unified description of the methods of quantitative EEG and event related potentials - Give a scientifically based overview of existing approaches in the field of neurotherapy - Provide practical information for the better understanding and treatment of disorders, such as ADHD, Schizophrenia, Addiction, OCD, Depression, and Alzheimer's Disease
A Combined MRI and Histology Atlas of the Rhesus Monkey Brain in Stereotaxic Coordinates, Second Edition maps the detailed architectonic subdivisions of the cortical and subcortical areas in the macaque monkey brain using high-resolution magnetic resonance (MR) images and the corresponding histology sections in the same animal. This edition of the atlas is unlike anything else available as it includes the detailed cyto- and chemoarchitectonic delineations of the brain areas in all three planes of sections (horizontal, coronal, and sagittal) that are derived from the same animal. This is a significant progress because in functional imaging studies, such as fMRI, both the horizontal and sagittal planes of sections are often the preferred planes given that multiple functionally active regions can be visualized simultaneously in a single horizontal or sagittal section. This combined MRI and histology atlas is designed to provide an easy-to-use reference for anatomical and physiological studies in macaque monkeys, and in functional-imaging studies in human and non-human primates using fMRI and PET. The first rhesus monkey brain atlas with horizontal, coronal, and sagittal planes of sections, derived from the same animal Shows the first detailed delineations of the cortical and subcortical areas in horizontal, coronal, and sagittal plane of sections in the same animal using different staining methods Horizonal series illustrates the dorsoventral extent of the left hemisphere in 47 horizontal MRI and photomicrographic sections matched with 47 detailed diagrams (Chapter 3) Coronal series presents the full rostrocaudal extent of the right hemisphere in 76 coronal MRI and photomicrographic sections, with 76 corresponding drawings (Chapter 4) Sagittal series shows the complete mediolateral extent of the left hemisphere in 30 sagittal MRI sections, with 30 corresponding drawings (Chapter 5). The sagittal series also illustrates the location of different fiber tracts in the white matter Individual variability - provides selected cortical and subcortical areas in three-dimensional MRI (horizontal, coronal, and sagittal MRI planes). For comparison, it also provides similar areas in coronal MRI section in six other monkeys. (Chapter 6) Vasculature - indicates the corresponding location of all major blood vessels in horizontal, coronal, and sagittal series of sections Provides updated information on the cortical and subcortical areas, such as architectonic areas and nomenclature, with references, in chapter 2 Provides the sterotaxic grid derived from the in-vivo MR image