Download Free Functional Analysis Of Genomically Linked Nlr Proteins In Plant Innate Immunity Book in PDF and EPUB Free Download. You can read online Functional Analysis Of Genomically Linked Nlr Proteins In Plant Innate Immunity and write the review.

Recent major advances in the field of comparative genomics and cytogenomics of plants, particularly associated with the completion of ambitious genome projects, have uncovered astonishing facets of the architecture and evolutionary history of plant genomes. The aim of this book was to review these recent developments as well as their implications in our understanding of the mechanisms which drive plant diversity. New insights into the evolution of gene functions, gene families and genome size are presented, with particular emphasis on the evolutionary impact of polyploidization and transposable elements. Knowledge on the structure and evolution of plant sex chromosomes, centromeres and microRNAs is reviewed and updated. Taken together, the contributions by internationally recognized experts present a panoramic overview of the structural features and evolutionary dynamics of plant genomes.This volume of Genome Dynamics will provide researchers, teachers and students in the fields of biology and agronomy with a valuable source of current knowledge on plant genomes.
A comprehensive review of stress signaling in plants using genomics and functional genomic approaches Improving agricultural production and meeting the needs of a rapidly growing global population requires crop systems capable of overcoming environmental stresses. Understanding the role of different signaling components in plant stress regulation is vital to developing crops which can withstand abiotic and biotic stresses without loss of crop yield and productivity. Emphasizing genomics and functional genomic approaches, Protein Kinases and Stress Signaling in Plants is a comprehensive review of cutting-edge research on stress perception, signal transduction, and stress response generation. Detailed chapters cover a broad range of topics central to improving agricultural production developing crop systems capable of overcoming environmental stresses to meet the needs of a rapidly growing global population. This book describes the field of protein kinases and stress signaling with a special emphasis on functional genomics. It presents a highly valuable contribution in the field of stress perception, signal transduction and generation of responses against one or multiple stress signals. This timely resource: Summarizes the role of various kinases involved in stress management Enumerates the role of TOR, GSK3-like kinase, SnRK kinases in different physiological conditions Examines mitogen-activated protein kinases (MAPKs) in different stresses Describes the different aspects of calcium signaling under different stress conditions Examines photo-activated kinases (PAPKs) in varying light conditions Briefs the presence of tyrosine kinases in plants Highlights the cellular functions of receptor ]like protein kinases (RLKs) Possible implication of these kinases in developing stress tolerant crops Protein Kinases and Stress Signaling in Plants: Functional Genomic Perspective is an essential resource for researchers and students in the fields of plant molecular biology and signal transduction, plant responses to stress, plant cell signaling, plant protein kinases, plant biotechnology, transgenic plants and stress biology.
The book offers an integrated overview of plant–pathogen interactions. It discusses all the steps in the pathway, from the microbe–host-cell interface and the plant’s recognition of the microbe to the plant’s defense response and biochemical alterations to achieve tolerance / resistance. It also sheds light on the classes of pathogens (bacteria, fungus and viruses); effector molecules, such as PAMPs; receptor molecules like PRRs and NBS-LRR proteins; signaling components like MAPKs; regulatory molecules, such as phytohormones and miRNA; transcription factors, such as WRKY; defense-related proteins such as PR-proteins; and defensive metabolites like secondary metabolites. In addition, it examines the role of post-genomics, high-throughput technology (transcriptomics and proteomics) in studying pathogen outbreaks causing crop losses in a number of plants. Providing a comprehensive picture of plant-pathogen interaction, the updated information included in this book is valuable for all those involved in crop improvement.
The evolutionary history of life includes two primary components: phylogeny and timescale. Phylogeny refers to the branching order (relationships) of species or other taxa within a group and is crucial for understanding the inheritance of traits and for erecting classifications. However, a timescale is equally important because it provides a way to compare phylogeny directly with the evolution of other organisms and with planetary history such as geology, climate, extraterrestrialimpacts, and other features.The Timetree of Life is the first reference book to synthesize the wealth of information relating to the temporal component of phylogenetic trees. In the past, biologists have relied exclusively upon the fossil record to infer an evolutionary timescale. However, recent revolutionary advances in molecular biology have made it possible to not only estimate the relationships of many groups of organisms, but also to estimate their times of divergence with molecular clocks. The routineestimation and utilization of these so-called 'time-trees' could add exciting new dimensions to biology including enhanced opportunities to integrate large molecular data sets with fossil and biogeographic evidence (and thereby foster greater communication between molecular and traditional systematists). Theycould help estimate not only ancestral character states but also evolutionary rates in numerous categories of organismal phenotype; establish more reliable associations between causal historical processes and biological outcomes; develop a universally standardized scheme for biological classifications; and generally promote novel avenues of thought in many arenas of comparative evolutionary biology.This authoritative reference work brings together, for the first time, experts on all major groups of organisms to assemble a timetree of life. The result is a comprehensive resource on evolutionary history which will be an indispensable reference for scientists, educators, and students in the life sciences, earth sciences, and molecular biology. For each major group of organism, a representative is illustrated and a timetree of families and higher taxonomic groups is shown. Basic aspects ofthe evolutionary history of the group, the fossil record, and competing hypotheses of relationships are discussed. Details of the divergence times are presented for each node in the timetree, and primary literature references are included. The book is complemented by an online database(www.timetree.net) which allows researchers to both deposit and retrieve data.
The Nod-like receptor (NLR) family of proteins are evolutionary conserved molecules that in plants and mammals have been implicated in innate immune sensing of microbes and infection-associated physiological changes, contributing to immune protection of the challenged host organism through the instruction of inflammatory responses, antimicrobial defense and adaptive immunity. Recent data however suggests that the biological roles of NLR go beyond the function of classical pattern recognition molecules (PRM) as they have been implicated in essential cellular processes including autophagy, apoptosis, modification of signal transduction and gene transcription as well as reproductive biology. In this research topic, we aim to provide a comprehensive state-of the art overview of the emerging functions of NLR in plant and mammalian immunity, cell biology and reproductive biology. Potential topics may include, but are not limited to the following areas: • Functions of NLRs as PRMs in infection • Cross-talk of NLRs with other PRMs • Signal transduction pathways of NLRs • New functions of NLRs other than pattern recognition • Structural aspects of NLR activation • Mechanisms of NLRs in cell biological processes • Aspects of NLRs in reproductive biology • Functions of NLRs in plant immune responses
"This volume covers protocols on techniques ranging from MAMP isolations from diverse microorganisms, PRR identifications from different plant species, MAMP-PRR binding, and a series of signaling responses and events revealed by various biochemical, cellular, genetic and bioinformatic tools. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Plant Pattern Recognition Receptors: Methods and Protocolsaims to ensure successful results in the further study of this vital field." -- OCLC.
Concern about the environmental consequences of the widespread use of pesticides has increased, and evidence of pesticide-resistant virus vectors have continued to emerge. This volume presents a timely survey of the mechanisms of plant resistance and examines current developments in breeding for resistance, with particular emphasis on advances in genetic engineering which allow for the incorporation of viral genetic material into plants. Discusses the mechanisms of innate resistance in strains of tobacco, tomato, and cowpea; various aspects of induced resistance, including the characterization and roles of the pathogenesis-related proteins; antiviral substances and their comparison with interferon; and cross-protection between plant virus strains. Also presents several papers which evaluate the status of genetic engineering as it relates to breeding resistant plants. Among these are discussions of the potential use of plant viruses as gene vectors, gene coding for viral coat protein, satellite RNA, and antisense RNA, and practical issues such as the durability of resistant crop plants in the field.
It is said that "necessity is the mother of invention". To be sure, wheels and pulleys were invented out of necessity by the tenacious minds of upright citi zens. Looking at the history of mankind, however, one has to add that "Ieisure is the mother of cultural improvement". Man's creative genius flourished only when his mind, freed from the worry of daily toils, was permitted to entertain apparently useless thoughts. In the same manner, one might say with regard to evolution that "natural selection mere(y tnodifted, while redundanry created". Natural selection has been extremely effective in policing alleHe mutations which arise in already existing gene loci. Because of natural selection, organisms have been able to adapt to changing environments, and by adaptive radiation many new species were created from a common ancestral form. Y et, being an effective policeman, natural selection is extremely conservative by nature. Had evolution been entirely dependent upon natural selection, from a bacterium only numerous forms of bacteria would have emerged. The creation of metazoans, vertebrates and finally mammals from unicellular organisms would have been quite impos sible, for such big leaps in evolution required the creation of new gene loci with previously nonexistent functions. Only the cistron which became redun dant was able to escape from the relentless pressure of natural selection, and by escaping, it accumulated formerly forbidden mutations to emerge as a new gene locus.