Download Free Functional Analysis And Continuous Optimization Book in PDF and EPUB Free Download. You can read online Functional Analysis And Continuous Optimization and write the review.

The book includes selected contributions presented at the "International Meeting on Functional Analysis and Continuous Optimization" held in Elche (Spain) on June 16–17, 2022. Its contents cover very recent results in functional analysis, continuous optimization and the interplay between these disciplines. Therefore, this book showcases current research on functional analysis and optimization with individual contributions, as well as new developments in both areas. As a result, the reader will find useful information and stimulating ideas.
Focusing on the study of nonsmooth vector functions, this book presents a comprehensive account of the calculus of generalized Jacobian matrices and their applications to continuous nonsmooth optimization problems, as well as variational inequalities in finite dimensions. The treatment is motivated by a desire to expose an elementary approach to nonsmooth calculus, using a set of matrices to replace the nonexistent Jacobian matrix of a continuous vector function.
Optimisation, or mathematical programming, is a fundamental subject within decision science and operations research, in which mathematical decision models are constructed, analysed, and solved. The books focus lies on providing a basis for the analysis of optimisation models and of candidate optimal solutions for continuous optimisation models. The main part of the mathematical material therefore concerns the analysis and linear algebra that underlie the workings of convexity and duality, and necessary/sufficient local/global optimality conditions for continuous optimisation problems. Natural algorithms are then developed from these optimality conditions, and their most important convergence characteristics are analysed. The book answers many more questions of the form Why? and Why not? than How?. We use only elementary mathematics in the development of the book, yet are rigorous throughout. The book provides lecture, exercise and reading material for a first course on continuous optimisation and mathematical programming, geared towards third-year students, and has already been used as such for nearly ten years. The preface to the second edition describes the main changes made since the first, 2005, edition. The book can be used in mathematical optimisation courses at any mathematics, engineering, economics, and business schools. It is a perfect starting book for anyone who wishes to develop his/her understanding of the subject of optimisation, before actually applying it.
A presentation of general results for discussing local optimality and computation of the expansion of value function and approximate solution of optimization problems, followed by their application to various fields, from physics to economics. The book is thus an opportunity for popularizing these techniques among researchers involved in other sciences, including users of optimization in a wide sense, in mechanics, physics, statistics, finance and economics. Of use to research professionals, including graduate students at an advanced level.
Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.
A linear semi-infinite program is an optimization problem with linear objective functions and linear constraints in which either the number of unknowns or the number of constraints is finite. The many direct applications of linear semi-infinite optimization (or programming) have prompted considerable and increasing research effort in recent years. The authors' aim is to communicate the main theoretical ideas and applications techniques of this fascinating area, from the perspective of convex analysis. The four sections of the book cover: * Modelling with primal and dual problems - the primal problem, space of dual variables, the dual problem. * Linear semi-infinite systems - existence theorems, alternative theorems, redundancy phenomena, geometrical properties of the solution set. * Theory of linear semi-infinite programming - optimality, duality, boundedness, perturbations, well-posedness. * Methods of linear semi-infinite programming - an overview of the main numerical methods for primal and dual problems. Exercises and examples are provided to illustrate both theory and applications. The reader is assumed to be familiar with elementary calculus, linear algebra and general topology. An appendix on convex analysis is provided to ensure that the book is self-contained. Graduate students and researchers wishing to gain a deeper understanding of the main ideas behind the theory of linear optimization will find this book to be an essential text.
In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.
Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. - Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature - Provides a theoretical understanding as well as practical implementation hints - Provides a step-by-step introduction to each algorithm
This book provides the foundations of the theory of nonlinear optimization as well as some related algorithms and presents a variety of applications from diverse areas of applied sciences. The author combines three pillars of optimization?theoretical and algorithmic foundation, familiarity with various applications, and the ability to apply the theory and algorithms on actual problems?and rigorously and gradually builds the connection between theory, algorithms, applications, and implementation. Readers will find more than 170 theoretical, algorithmic, and numerical exercises that deepen and enhance the reader's understanding of the topics. The author includes offers several subjects not typically found in optimization books?for example, optimality conditions in sparsity-constrained optimization, hidden convexity, and total least squares. The book also offers a large number of applications discussed theoretically and algorithmically, such as circle fitting, Chebyshev center, the Fermat?Weber problem, denoising, clustering, total least squares, and orthogonal regression and theoretical and algorithmic topics demonstrated by the MATLAB? toolbox CVX and a package of m-files that is posted on the book?s web site.
Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.