Download Free Frustrated Spin Systems Third Edition Book in PDF and EPUB Free Download. You can read online Frustrated Spin Systems Third Edition and write the review.

Frustrated spin systems have been first investigated five decades ago. Well-known examples include the Ising model on the antiferromagnetic triangular lattice studied by G H Wannier in 1950 and the Heisenberg helical structure discovered independently by A Yoshimori, J Villainn and T A Kaplan in 1959. However, extensive investigations on frustrated spin systems have really started with the concept of frustration introduced at the same time by G Toulouse and by J Villain in 1977 in the context of spin glasses. The frustration is generated by the competition of different kinds of interaction and/or by the lattice geometry. As a result, in the ground state all bonds are not fully satisfied. In frustrated Ising spin systems, a number of spins behave as free spins. In frustrated vector spin systems, the ground-state configuration is usually non-collinear. The ground state of frustrated spin systems is therefore highly degenerate and new induced symmetries give rise to unexpected behaviors at finite temperatures. Many properties of frustrated systems are still not well understood at present. Theoretically, recent studies shown in this book reveal that established theories, numerical simulations as well as experimental techniques have encountered many difficulties in dealing with frustrated systems. In some sense, frustrated systems provide an excellent testing ground for approximations and theories. Experimentally, more and more frustrated materials are discovered with interesting properties for applications.
This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can — within a single book — obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated spin systems. The first edition of the book appeared in 2005. In this edition, more recent works until 2012 are reviewed. It contains nine chapters written by researchers who have actively contributed to the field. Many results are from recent works of the authors.The book is intended for postgraduate students as well as researchers in statistical physics, magnetism, materials science and various domains where real systems can be described with the spin language. Explicit demonstrations of formulas and full arguments leading to important results are given where it is possible to do so.
The field of highly frustrated magnetism has developed considerably and expanded over the last 15 years. Issuing from canonical geometric frustration of interactions, it now extends over other aspects with many degrees of freedom such as magneto-elastic couplings, orbital degrees of freedom, dilution effects, and electron doping. Its is thus shown here that the concept of frustration impacts on many other fields in physics than magnetism. This book represents a state-of-the-art review aimed at a broad audience with tutorial chapters and more topical ones, encompassing solid-state chemistry, experimental and theoretical physics.
This third edition of one of the most important and best selling textbooks in statistical physics, is a graduate level text suitable for students in physics, chemistry, and materials science.The discussion of strongly interacting condensed matter systems has been expanded. A chapter on stochastic processes has also been added with emphasis on applications of the Fokker-Planck equation.The modern theory of phase transitions occupies a central place. The chapter devoted to the renormalization group approach is largely rewritten and includes a detailed discussion of the basic concepts and examples of both exact and approximate calculations. The development of the basic tools includes a chapter on computer simulations in which both Monte Carlo method and molecular dynamics are introduced, and a section on Brownian dynamics added.The theories are applied to a number of important systems such as liquids, liquid crystals, polymers, membranes, Bose condensation, superfluidity and superconductivity. There is also an extensive treatment of interacting Fermi and Bose systems, percolation theory and disordered systems in general.
Carbon Based Magnetism is the most complete, detailed, and accurate guide on the magnetism of carbon, the main element of living creatures. Written by the leading experts in the field, the book provides a comprehensive review of relevant experimental data and theoretical concepts related to the magnetism of metal-free carbon systems. These systems include carbon based compounds, namely organic radical magnetic systems, and magnetic materials based on carbon structures. The aim is to advance the understanding of the fundamental properties of carbon. This volume discusses all major modern hypotheses on the physical nature of magnetic ordering in carbon systems. The first chapters deal with magnetic ordering mechanisms in p-electron systems as well as molecular magnets with spins residing only in p-orbitals. The following chapters explore the magnetic properties of pure carbon, with particular emphasis on nanosized carbon systems with closed boundary (fullerenes and nanotubes) and with open boundary (structures with edge-localized magnetic states). The remaining chapters focus on newer topics: experimental observation and theoretical models for magnetic ordering above room temperature in pure carbon. The book also includes twenty three review articles that summarize the most significant recent and ongoing exciting scientific developments and provide the explanation. It also highlights some problems that have yet to be solved and points out new avenues for research. This book will appeal to physicists, chemists and biologists. - The most complete, detailed, and accurate Guide in the magnetism of carbon - Dynamically written by the leading experts - Deals with recent scientific highlights - Gathers together chemists and physicists, theoreticians and experimentalists - Unified treatment rather than a series of individually authored papers - Description of genuine organic molecular ferromagnets - Unique description of new carbon materials with Curie temperatures well above ambient.
Computational neuroscience is the theoretical study of the brain to uncover the principles and mechanisms that guide the development, organization, information processing, and mental functions of the nervous system. Although not a new area, it is only recently that enough knowledge has been gathered to establish computational neuroscience as a scientific discipline in its own right. Given the complexity of the field, and its increasing importance in progressing our understanding of how the brain works, there has long been a need for an introductory text on what is often assumed to be an impenetrable topic. The new edition of Fundamentals of Computational Neuroscience build on the success and strengths of the previous editions. It introduces the theoretical foundations of neuroscience with a focus on the nature of information processing in the brain. The book covers the introduction and motivation of simplified models of neurons that are suitable for exploring information processing in large brain-like networks. Additionally, it introduces several fundamental network architectures and discusses their relevance for information processing in the brain, giving some examples of models of higher-order cognitive functions to demonstrate the advanced insight that can be gained with such studies. Each chapter starts by introducing its topic with experimental facts and conceptual questions related to the study of brain function. An additional feature is the inclusion of simple Matlab programs that can be used to explore many of the mechanisms explained in the book. An accompanying webpage includes programs for download. The book will be the essential text for anyone in the brain sciences who wants to get to grips with this topic.
Advanced Magnetic and OpticalMaterials offers detailed up-to-date chapters on the functional optical and magnetic materials, engineering of quantum structures, high-tech magnets, characterization and new applications. It brings together innovative methodologies and strategies adopted in the research and development of the subject and all the contributors are established specialists in the research area. The 14 chapters are organized in two parts: Part 1: Magnetic Materials Magnetic Heterostructures and superconducting order Magnetic Antiresonance in nanocomposites Magnetic bioactive glass-ceramics for bone healing and hyperthermic treatment of solid tumors Magnetic iron oxide nanoparticles Magnetic nanomaterial-based anticancer therapy Theoretical study of strained carbon-based nanobelts: Structural, energetical, electronic, and magnetic properties Room temperature molecular magnets – Modeling and applications Part 2: Optical Materials Advances and future of white LED phosphors for solid-state lighting Design of luminescent materials with “Turn-on/off” response for anions and cations Recent advancements in luminescent materials and their potential applications Strongly confined quantum dots: Emission limiting, photonic doping, and magneto-optical effects Microstructure characterization of some quantum dots synthesized by mechanical alloying Advances in functional luminescent materials and phosphors Development in organic light emitting materials and their potential applications
This book is intended for postgraduate students as well as researchers in various areas of physics such as statistical physics, magnetism and materials sciences. The content of the book covers mainly frustrated spin systems with possible applications in domains where physical systems can be mapped into the spin language. Pedagogical effort has been made to make each chapter to be self-contained, comprehensible for researchers who are not really involved in the field. Basic methods are given in detail.
This book is for graduate students and researchers who wish to understand theoretical mechanisms lying behind macroscopic properties of magnetic thin films. It provides a detailed description of basic theoretical methods and techniques of simulation to help readers in their research projects. The first part of the book contains 6 chapters. Chapters 1 to 5 focus on the fundamental theory of bulk magnetic materials. Chapter 6 is devoted to the presentation of the Monte Carlo simulation methods. Exercises and problems are provided at the end of each of these chapters for self-training. The second part contains 11 chapters devoted to the main topic of the book, namely “physics of magnetic thin films: theory and simulation.” Written as a research paper, each chapter focuses on a subject and also presents the state-of-the-art literature on the subject and the motivation of the chapter. A detailed description of the techniques and the presentation of the results are then shown with discussion.