Download Free Frontiers Of Nanofiber Fabrication And Applications Book in PDF and EPUB Free Download. You can read online Frontiers Of Nanofiber Fabrication And Applications and write the review.

Special topic volume with invited peer reviewed papers only.
This special issue covers mainly electrospinning, vibration-electrospinning, bubble electrospinning and blown bubble spinning, and it is a good reference not only for materials science, but also for various communities in physics, nanotechnology and chemistry. Temporary description, more details to follow.
Electrospun Nanofibers covers advances in the electrospinning process including characterization, testing and modeling of electrospun nanofibers, and electrospinning for particular fiber types and applications. Electrospun Nanofibers offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science. Electrospinning is the most commercially successful process for the production of nanofibers and rising demand is driving research and development in this field. Rapid progress is being made both in terms of the electrospinning process and in the production of nanofibers with superior chemical and physical properties. Electrospinning is becoming more efficient and more specialized in order to produce particular fiber types such as bicomponent and composite fibers, patterned and 3D nanofibers, carbon nanofibers and nanotubes, and nanofibers derived from chitosan. - Provides systematic and comprehensive coverage of the manufacture, properties, and applications of nanofibers - Covers recent developments in nanofibers materials including electrospinning of bicomponent, chitosan, carbon, and conductive fibers - Brings together expertise from academia and industry to provide comprehensive, up-to-date information on nanofiber research and development - Offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science
Electrospinning is a versatile method to synthesize fiber materials. Electrospun Nanofibres: Materials, Methods, and Applications explores the technical aspects of electrospinning methods used to derive a wide range of functional fiber materials and their applications in various technical sectors. As electrospinning is a process that can be modified strategically to achieve different fibers of interest, this book covers the wide spectrum of electrospinning methodologies, such as coaxial, triaxial, emulsion, suspension, electrolyte and gas-assisted spinning processes. It: • Discusses a broad range of materials, including synthetic polymers, biodegradable polymers, metals and their oxides, hybrid materials, nonpolymers, and more. • Reviews different electrospinning methods and combined technologies. • Describes process-related parameters and their influence on material properties and performance. • Examines modeling of the electrospinning process. • Highlights applications across different industries. This book is aimed at researchers, professionals, and advanced students in materials science and engineering.
The book “Frontiers and Textile Materials will deal with the important materials that can be utilized for value-addition and functionalization of textile materials. The topics covered in this book includes the materials like enzymes, polymers, etc. that are utilized for conventional textile processing and the advanced materials like nanoparticles which are expected to change the horizons of textiles. The futuristic techniques for textile processing like plasma are also discussed.
This book focuses on the recent advancements in the process parameters, research, and applications of electrospinning and electrospraying. The first chapter introduces the techniques and the effect of the parameters on the morphology of the nanofiber and nanoparticles and then the subsequent chapters focus on the applications of these techniques in different areas. This book will attract a broad audience including postgraduate students and industrial and academic investigators in sciences and engineering who wish to enhance their understanding of the emerging technologies and use this book as reference.
Nanofabrication is the process of assembling structures at the nanoscale with unique properties. This book describes proficient, low-cost, and robust nanofabrication techniques to produce nanostructures. It presents information on nanofabrication technology principles, methodologies, equipment, and processes, as well as discusses the fabrication of new structures for new applications. The nanofabrication techniques reviewed are applicable to different engineering processes, nano-electromechanical systems, biosensors, nanomaterials, photonic crystals, devices, and new structures. This book is a useful resource for students and professionals, including engineers, scientists, researchers, technicians, and technology managers.
Electrospinning: Nanofabrication and Applications presents an overview of the electrospinning technique, nanofabrication strategies and potential applications. The book begins with an introduction to the fundamentals of electrospinning, discussing fundamental principles of the electrospinning process, controlling parameters, materials and structures. Nanofabrication strategies, including coaxial electrospinning, multi-needle electrospinning, needleless electrospinning, electro-netting, near-field electrospinning, and three-dimensional macrostructure assembling are also covered. Final sections explore the applications of electrospun nanofibers in different fields and future prospects. This is a valuable reference for engineers and materials scientist working with fibrous materials and textiles, as well as researchers in the areas of nanotechnology, electrospinning, nanofibers and textiles. - Explores controllable fabrication of electrospun nanomaterials and their multifunctional applications - Explains the electrospinning technique as used in nanofabrication and nanofibers - Outlines the applications of electrospun nanofibrous materials in tissue engineering, filtration, oil-water separation, water treatment, food technology, supercapacitors, sensors and so on
This Handbook covers all aspects related to Nanofibers, from the experimental set-up for their fabrication to their potential industrial applications. It describes several kinds of nanostructured fibers such as metal oxides, natural polymers, synthetic polymers and hybrid inorganic-polymers or carbon-based materials. The first part of the Handbook covers the fundamental aspects, experimental setup, synthesis, properties and physico-chemical characterization of nanofibers. Specifically, this part details the history of nanofibers, different techniques to design nanofibers, self-assembly in nanofibers, critical parameters of synthesis, fiber alignment, modeling and simulation, types and classifications of nanofibers, and signature physical and chemical properties (i.e. mechanical, electrical, optical and magnetic), toxicity and regulations, bulk and surface functionalization and other treatments to allow them to a practical use. Characterization methods are also deeply discussed here. The second part of the Handbook deals with global markets and technologies and emerging applications of nanofibers, such as in energy production and storage, aerospace, automotive, sensors, smart textile design, energy conversion, tissue engineering, medical implants, pharmacy and cosmetics. Attention is given to the future of research in these areas in order to improve and spread the applications of nanofibers and their commercialization.
Textiles with functional properties such as antimicrobial finishes, drug delivery, ultraviolet resistance, electrical conductivity, superhydrophilicity, superhydrophobicity, self-cleaning, EMI shielding, flame-retardance can be developed with the help of nanotechnology. Nanomaterials can be added to the textile materials at different stages of the production process, including spinning, finishing, and coating. Nanofibers are textile fibers that show enhanced properties due to larger surface area compared with ordinary textile fibers. They have diameters less than 1000 nm and can hold nanoparticles, drugs, extracts, essential oils, etc. in their polymeric matrix. They actually encapsulate these compounds and are able to control their release by delivering them only at the targeted sites. Recently, nanofibers and textile nanocomposites have attracted great interest in the industry and research, and electrospinning is the most famous among the several methods that have been developed for the fabrication of nanofibers. This book is a collection of the reviews on the recent advances in the fields of nanofibers, nanocomposites, and their applications in textiles as well as related fields.