Download Free Frontiers In Transition Metal Containing Polymers Book in PDF and EPUB Free Download. You can read online Frontiers In Transition Metal Containing Polymers and write the review.

A detailed, up-to-date review of transition metal-containing polymers Promising advances in the electrical, optical, magnetic, biological, and catalytic properties that metal-containing polymers possess have led to notable expansion in the field of transition metal-containing polymers. Frontiers in Transition Metal-Containing Polymers provides a comprehensive, up-to-date review of the synthesis, properties, and applications of transition metal-containing polymers, including an overview of the historical development of these types of polymers. Written by the leading researchers in the field, this thorough volume covers the routes to organometallic and coordination polymers, as well as characterization and applications of transition metal-containing monomers and polymers. Other topics discussed include: Metallo-supramolecular coordination polymers based on nitrogen ligands Coordination polymers based on phosphorus ligands Polypeptide-based metallobiopolymers and DNA-based metallopolymers Metallodendrimers Self-assembly of metal-containing block copolymers Applications including drug delivery, optics, molecular devices, sensors, conductive materials, and more
This book presents the synthetic methodologies as well as the properties and potential usage of various ruthenium-containing materials. Starting from the first examples of 'ruthenopolymers' reported in the 1970s to the 3D architectures now synthesized, these materials have shown their importance far beyond fundamental polymer science. As well as highlighting the remarkable properties and versatile applications, this book also addresses a key question related to the applications of such heavy-metal-containing materials from the perspective of achieving a sustainable future. This book is of interest to both materials scientists and chemists in academia and industry.
Carraher's Polymer Chemistry, Tenth Edition integrates the core areas of polymer science. Along with updating of each chapter, newly added content reflects the growing applications in Biochemistry, Biomaterials, and Sustainable Industries. Providing a user-friendly approach to the world of polymeric materials, the book allows students to integrate their chemical knowledge and establish a connection between fundamental and applied chemical information. It contains all of the elements of an introductory text with synthesis, property, application, and characterization. Special sections in each chapter contain definitions, learning objectives, questions, case studies and additional reading.
Edited and authored by top international experts, this first book on conjugated polymers with a focus on synthesis provides a detailed overview of all modern synthetic methods for these highly interesting compounds. As such, it describes every important compound class, including polysilanes, organoboron compounds, and ferrocene-containing conjugated polymers. An indispensable source for every synthetic polymer chemist.
Presents the state of the technology, from fundamentals to new materials and applications Today's electronic devices, computers, solar cells, printing, imaging, copying, and recording technology, to name a few, all owe a debt to our growing understanding of the photophysics and photochemistry of polymeric materials. This book draws together, analyzes, and presents our current understanding of polymer photochemistry and photophysics. In addition to exploring materials, mechanisms, processes, and properties, the handbook also highlights the latest applications in the field and points to new developments on the horizon. Photochemistry and Photophysics of Polymer Materials is divided into seventeen chapters, including: Optical and luminescent properties and applications of metal complex-based polymers Photoinitiators for free radical polymerization reactions Photovoltaic polymer materials Photoimaging and lithographic processes in polymers Photostabilization of polymer materials Photodegradation processes in polymeric materials Each chapter, written by one or more leading experts and pioneers in the field, incorporates all the latest findings and developments as well as the authors' own personal insights and perspectives. References guide readers to the literature for further investigation of individual topics. Together, the contributions represent a series of major developments in the polymer world in which light and its energy have been put to valuable use. Not only does this reference capture our current state of knowledge, but it also provides the foundation for new research and the development of new materials and new applications.
This book deals with the chemistry of polymeric metal chelates. The main results and the production and chemical structure of polymers with chelate units as well as the specificity of metal complex binding of different structure are presented here. This book also reveals the transformations which components undergo in the course of chelation. Special attention is paid not only to synthetic but also to natural (including living) systems. The usage of polymeric metal chelates and their development are examined. The related research was performed for chelates with chain structure. This book is useful to researchers being active in synthesis and design of macromolecular metal chelates
Updated to reflect a growing focus on green chemistry in the scientific community and in compliance with the American Chemical Society’s Committee on Professional Training guidelines, Carraher’s Polymer Chemistry, Eighth Edition integrates the core areas that contribute to the growth of polymer science. It supplies the basic understanding of polymers essential to the training of science, biomedical, and engineering students. New in the Eighth Edition: Updating of analytical, physical, and special characterization techniques Increased emphasis on carbon nanotubes, tapes and glues, butyl rubber, polystyrene, polypropylene, polyethylene, poly(ethylene glycols), shear-thickening fluids, photo-chemistry and photophysics, dental materials, and aramids New sections on copolymers, including fluoroelastomers, nitrile rubbers, acrylonitrile-butadiene-styrene terpolymers, and EPDM rubber New units on spliceosomes, asphalt, and fly ash and aluminosilicates Larger focus on the molecular behavior of materials, including nano-scale behavior, nanotechnology, and nanomaterials Continuing to provide a user-friendly approach to the world of polymeric materials, the book allows students to integrate their chemical knowledge and establish a connection between fundamental and applied chemical information. It contains all of the elements of an introductory text with synthesis, property, application, and characterization. Special sections in each chapter contain definitions, learning objectives, questions, and additional reading, with case studies woven into the text fabric. Symbols, trade names, websites, and other useful ancillaries appear in the appendices to supplement the text.
Most of the advancements in communication, computers, medicine, and air and water purity are linked to macromolecules and a fundamental understanding of the principles that govern their behavior. These fundamentals are explored in Carraher's Polymer Chemistry, Ninth Edition. Continuing the tradition of previous volumes, the latest edition provides a well-rounded presentation of the principles and applications of polymers. With an emphasis on the environment and green chemistry and materials, this edition offers detailed coverage of natural and synthetic giant molecules, inorganic and organic polymers, biomacromolecules, elastomers, adhesives, coatings, fibers, plastics, blends, caulks, composites, and ceramics. Using simple fundamentals, this book demonstrates how the basic principles of one polymer group can be applied to all of the other groups. It covers reactivities, synthesis and polymerization reactions, techniques for characterization and analysis, energy absorption and thermal conductivity, physical and optical properties, and practical applications. This edition includes updated techniques, new sections on a number of copolymers, expanded emphasis on nanotechnology and nanomaterials, and increased coverage of topics including carbon nanotubes, tapes and glues, photochemistry, and more. With topics presented so students can understand polymer science even if certain parts of the text are skipped, this book is suitable as an undergraduate as well as an introductory graduate-level text. The author begins most chapters with theory followed by application, and generally addresses the most critical topics first. He provides all of the elements of an introductory text, covering synthesis, properties, applications, and characterization. This user-friendly book also contains definitions, learning objectives, questions, and additional reading in each chapter.
During the last two decades silicon-containing dendritic polymers have become one of the fastest growing areas of development in polymer science. The eruption of interest in these new polymers stems from their unprecedented molecular architecture, unique resulting properties and the realization that they represent ideal building blocks for chemical nanotechnology. This is the first book to solely focus on silicon-containing dendritic polymers. The contributions of those experts who originally introduced each field or played a major role in its progress are reported. The developments in all major areas of this field are presented from their origins to the present. It is anticipated that this text will become an invaluable guide and vanguard of reference for experienced scientists interested in the fields of polymer and material science, synthetic chemistry, and nanotechnology. It will also serve advanced graduate students either as a source of creative inspiration or as a textbook for appropriate courses.