Download Free Frontiers In Neutron Capture Therapy Book in PDF and EPUB Free Download. You can read online Frontiers In Neutron Capture Therapy and write the review.

Frontiers in Neutron Capture Therapy contains current research results originally presented at the Eighth International Symposium on Neutron Capture Therapy for Cancer in La Jolla, CA. This comprehensive collection of peer-reviewed manuscripts is showcased in two volumes covering all aspects of the development of this multidisciplinary approach to cancer therapy. Volume I of this work includes clinical results and current progress in treatment planning, neutron sources and dosimetry, while Volume II presents the synthesis, pharmacology and tissue-targeting design of boron compounds, including work on preclinical dosimetry and radiobiology. Intended for researchers and clinicians involved with or interested in new modes of cancer therapy, this volume will also serve as a useful guideline for scientists, students, and practitioners in the field.
Neutron capture therapy (NCT) is based on the ability of the non-radioactive isotope boron-10 to capture thermal neutrons with very high probability and immediately to release heavy particles with a path length of one cell diameter, which in principle allows for tumor cell-selective high-LET particle radiotherapy. This book provides a comprehensive summary of the progress made in NCT in recent years. Individual sections cover all important aspects, including neutron sources, boron chemistry, drugs for NCT, dosimetry, and radiation biology. The use of NCT in a variety of malignancies and also some non-malignant diseases is extensively discussed. NCT is clearly shown to be a promising modality at the threshold of wider clinical application. All of the chapters are written by experienced specialists in language that will be readily understood by all participating disciplines.
The classic case for why government must support science—with a new essay by physicist and former congressman Rush Holt on what democracy needs from science today Science, the Endless Frontier is recognized as the landmark argument for the essential role of science in society and government’s responsibility to support scientific endeavors. First issued when Vannevar Bush was the director of the US Office of Scientific Research and Development during the Second World War, this classic remains vital in making the case that scientific progress is necessary to a nation’s health, security, and prosperity. Bush’s vision set the course for US science policy for more than half a century, building the world’s most productive scientific enterprise. Today, amid a changing funding landscape and challenges to science’s very credibility, Science, the Endless Frontier resonates as a powerful reminder that scientific progress and public well-being alike depend on the successful symbiosis between science and government. This timely new edition presents this iconic text alongside a new companion essay from scientist and former congressman Rush Holt, who offers a brief introduction and consideration of what society needs most from science now. Reflecting on the report’s legacy and relevance along with its limitations, Holt contends that the public’s ability to cope with today’s issues—such as public health, the changing climate and environment, and challenging technologies in modern society—requires a more capacious understanding of what science can contribute. Holt considers how scientists should think of their obligation to society and what the public should demand from science, and he calls for a renewed understanding of science’s value for democracy and society at large. A touchstone for concerned citizens, scientists, and policymakers, Science, the Endless Frontier endures as a passionate articulation of the power and potential of science.
Boron has long occupied a privileged role in chemistry (as a catalyst component) and human health (as a micronutrient). In 1951, boron science took a momentous leap forward with its application in clinical cancer research. The seventy or so years since have witnessed exciting developments in the technology now known as Boron Nuclear Capture Therapy (BNCT), a binary form of radiotherapy that lethally combines two separately non-lethal constituents: a boron-based radiosensitizer and non-ionizing neutron radiation. Frontiers in Boron-based Medicinal Chemistry is a one-stop resource on the current state of BNCT and promising works in the pipeline. It begins with an introduction to general boron chemistry, with extensive discussion on important boron compounds including boranes, boronic acids, carboranes, and FDA-approved boron drugs. Chapter 2 looks at BNCT in clinical trials, while Chapter 3 describes emerging next-generation agents such as boron-based nanoparticles and dendrimers. The penultimate chapter summarizes the currently used and emerging imaging techniques in BNCT, namely, PET, CT, MRI and fluorescence microscopy. The book concludes with a technically heavy chapter on neutron sources and dosimetry. The cutting-edge information contained in this authoritative volume will be a valuable resource for all those involved in mankind's endless struggle against cancer.
Proton Therapy Physics goes beyond current books on proton therapy to provide an in-depth overview of the physics aspects of this radiation therapy modality, eliminating the need to dig through information scattered in the medical physics literature. After tracing the history of proton therapy, the book summarizes the atomic and nuclear physics background necessary for understanding proton interactions with tissue. It describes the physics of proton accelerators, the parameters of clinical proton beams, and the mechanisms to generate a conformal dose distribution in a patient. The text then covers detector systems and measuring techniques for reference dosimetry, outlines basic quality assurance and commissioning guidelines, and gives examples of Monte Carlo simulations in proton therapy. The book moves on to discussions of treatment planning for single- and multiple-field uniform doses, dose calculation concepts and algorithms, and precision and uncertainties for nonmoving and moving targets. It also examines computerized treatment plan optimization, methods for in vivo dose or beam range verification, the safety of patients and operating personnel, and the biological implications of using protons from a physics perspective. The final chapter illustrates the use of risk models for common tissue complications in treatment optimization. Along with exploring quality assurance issues and biological considerations, this practical guide collects the latest clinical studies on the use of protons in treatment planning and radiation monitoring. Suitable for both newcomers in medical physics and more seasoned specialists in radiation oncology, the book helps readers understand the uncertainties and limitations of precisely shaped dose distribution.
Since the first clinical trials on Boron Neutron Capture Therapy in the 1950s, BNCT research has been mainly focussed on the treatment of (deep-seated) brain tumours, in particular, glioblastoma multiforme. Promising work to treat other cancers at other locations and even other diseases are in progress. Therefore, the chemists, medical doctors, physicists and biologists involved in BNCT are not only continuing to investigate and improve the (brain) clinical results, but are also investigating the new applications in BNCT. The work presented in this thesis is in the field of physics and deals, from three different viewpoints, with obtaining the optimal source neutron energy to optimise BNCT. The optimal source neutron energy is defined such as to obtain as many as possible (n, a)-absorptions due to 10B in the tumours and as low as possible total neutron dose in the healthy tissues and organs at risk
This is truly an exciting time in the field of neuro-oncology, particularly in the area of hi- grade gliomas. The management of patients with high-grade gliomas has historically been one of the most challenging and disheartening fields in medicine, where failure is the rule and longevity is the exception. The jaded often state that despite purported advances in surgical and radiotherapeutic techniques and a myriad of clinical trials of medical therapies, the s- vival statistics for glioblastoma have not changed in the last three decades. The nihilism associated with these tumors is such that some practitioners still advise against treatment or even biopsy, recommending palliative care with the diagnosis based only on history and an MRI scan. If the current state-of-the-art in the diagnosis and management of high-grade gliomas was truly so bleak, there would be no reason to compile and publish a monograph on the subject. The fact is that we have recently entered an era where real progress is being made in our understanding and treatment of high-grade gliomas that is directly benefiting some patients. We are slowly but surely chipping away at this problem. One approach has exploited correlations between particular molecular markers and therapeutic response. The first such “breakthrough” in high-grade glioma was the observation that loss of chromosomes 1p and 19q uniformly predict chemosensitivity in anaplastic oligodendrogliomas (1).
The book "Advances in Cancer Therapy" is a new addition to the Intech collection of books and aims at providing scientists and clinicians with a comprehensive overview of the state of current knowledge and latest research findings in the area of cancer therapy. For this purpose research articles, clinical investigations and review papers that are thought to improve the readers' understanding of cancer therapy developments and/or to keep them up to date with the most recent advances in this field have been included in this book. With cancer being one of the most serious diseases of our times, I am confident that this book will meet the patients', physicians' and researchers' needs.
A comprehensive, authoritative and up-to-date reference for the newcomer to radiopharmaceuticals and those already in the field. Radiopharmaceuticals are used to detect and characterise disease processes, or normal biological function, in living cells, animals or humans. Used as tracer molecules, they map the distribution, uptake and metabolism of the molecule in clinical studies, basic research or applied research. The area of radiopharmaceuticals is expanding rapidly. The number of PET centers in the world is increasing at 20% per year, and many drug companies are utilising PET and other forms of radiopharmaceutical imaging to evaluate products. * Readers will find coverage on a number of important topics such as radionuclide production, PET and drug development, and regulations * Explains how to use radiopharmaceuticals for the diagnosis and therapy of cancer and other diseases * The editors and a majority of the contributors are from the United States
Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine examines the applications of Monte Carlo (MC) calculations in therapeutic nuclear medicine, from basic principles to computer implementations of software packages and their applications in radiation dosimetry and treatment planning. With chapters written by recognized authorit