Download Free Frontiers In Histamine Research Book in PDF and EPUB Free Download. You can read online Frontiers In Histamine Research and write the review.

Brain aminergic pathways are organized in parallel and interacting systems, which support a range of functions, from homoeostatic regulations to cognitive, and motivational processes. Despite overlapping functional influences, dopamine, serotonin, noradrenaline and histamine systems provide different contributions to these processes. The histaminergic system, long ignored as a major regulator of the sleep-wake cycle, has now been fully acknowledged also as a major coordinator of attention, learning and memory, decision making. Although histaminergic neurons project widely to the whole brain, they are functionally heterogeneous, a feature which may provide the substrate for differential regulation, in a region-specific manner, of other neurotransmitter systems. Neurochemical preclinical studies have clearly shown that histamine interacts and modulates the release of neurotransmitters that are recognized as major modulators of cognitive processing and motivated behaviours. As a consequence, the histamine system has been proposed as a therapeutic target to treat sleep-wake disorders and cognitive dysfunctions that accompany neurodegenerative and neuroinflammatory pathologies. Last decades have witnessed an unexpected explosion of interest in brain histamine system, as new receptors have been discovered and selective ligands synthesised. Nevertheless, the complete picture of the histamine systems fine-tuning and its orchestration with other pathways remains rather elusive. This Research Topic is intended to offer an inter-disciplinary forum that will improve our current understanding of the role of brain histamine and provide the fundamentals necessary to drive innovation in clinical practice and to improve the management and treatment of neurological disorders.
Advances in itch research have elucidated differences between itch and pain but have also blurred the distinction between them. There is a long debate about how somatic sensations including touch, pain, itch, and temperature sensitivity are encoded by the nervous system. Research suggests that each sensory modality is processed along a fixed, direct-line communication system from the skin to the brain. Itch: Mechanisms and Treatment presents a timely update on all aspects of itch research and the clinical treatment of itch that accompanies many dermatological conditions including psoriasis, neuropathic itch, cutaneous t-cells lymphomas, and systemic diseases such as kidney and liver disease and cancer. Composed of contributions from distinguished researchers around the world, the book explores topics such as: Neuropathic itch Peripheral neuronal mechanism of itch The role of PAR-2 in neuroimmune communication and itch Mrgprs as itch receptors The role of interleukin-31 and oncostatin M in itch and neuroimmune communication Spinal coding of itch and pain Spinal microcircuits and the regulation of itch Examining new findings on cellular and molecular mechanisms, the book is a compendium of the most current research on itch, its prevalence in society, and the problems associated with treatment.
Dementia is a brain disorder that seriously affects a person's ability to carry out daily activities. The most common form of dementia among older people is Alzheimer's Disease (AD), which involves the parts of the brain that control memory, thought and language. Age is the most important known risk factor for AD. The number of people with the disease doubles every 5 years beyond age 65. AD is a slow disease, starting with mild memory loss and ending with severe brain damage. The course the disease takes and how fast changes occur vary from person to person. On average, AD patients live from 8 to 10 years after they are diagnosed, though the disease can last for as many as 20 years. Current research is aimed at understanding why AD occurs and who is at greatest risk for developing it, improving the accuracy of diagnosis and ability to identify who is at risk, developing, discovering and testing new treatments for behavioural problems in patients with AD. This book gathers state-of-the-art research from leading scientists throughout the world which offers important information on understanding the underlying causes and discovering the most effective treatments for Alzheimer's Disease.
Frontiers in Clinical Drug Research - Anti-Allergy Agents is a book series comprising of a selection of updated review articles relevant to the recent development of pharmacological agents used for the treatment of allergies. The scope of the reviews includes clinical trials of anti-inflammatory and anti-allergic drugs, drug delivery strategies used to treat specific allergies (such as inflammation, asthma and dermatological allergies), lifestyle dependent modes of therapies and the immunological or metabolic mechanisms that are of interest to researchers as targets for new drugs. The third volume of this series brings 5 reviews which cover the following topics: H1 receptor selectivity, chronic spontaneous urticaria therapy, smooth muscle cell Ca2+ signaling pathway targeting for asthma therapy, allergic rhinitis and endosomal toll-like receptors. Frontiers in Clinical Drug Research - Anti-Allergy Agents will be of interest to immunologists and drug discovery researchers interested in anti-allergic drug therapy as the series provides relevant cutting edge reviews written by experts in this rapidly expanding field.
Numerous phenomenal advances have been made towards understanding the role of neurotransmitters in the pathophysiology of neurological disorders, and these have resulted in a large number of novel molecules with the potential to revolutionize the treatment and prevention of such disorders. This book provides a comprehensive and detailed explanation of brain neurotransmitters and their receptors and associated channels. It includes a basic introduction, and also discusses the functions and recent advances and their pharmacology, highlighting the role of various computer aided drug design (CADD) strategies for the development of therapeutic ligands to modulate these receptors/ion channels. Written in an easy-to-read style, it is intended for neuroscience and pharmaceutical students and researchers working in the area of brain neurotransmitters.
A precise analysis of biogenic amines is important as an indicator of food freshness or spoilage that can cause serious toxicity. This book provides comprehensive background information on biogenic amines and their occurrence in various foods and drinks such as fermented and non-fermented sausages and fish products, cheeses, vegetables and beverages, e.g. beer, cider and wine. It gives a detailed description of both the established analytical methods and the emerging technologies for the analysis of them. As the first book on the detection of biogenic amines in all types of food, it provides help to get a better understanding of the risks associated with biogenic amines and how to avoid them. It serves as an excellent and up-to-date reference for food scientists, food chemists and food safety professionals.
This book provides an overview on the histaminergic neuron system in the brain for neuroscience, anatomy, pharmacology, biochemistry, and medical researchers. Topics discussed include the biochemistry of enzymes; histamine receptors (H1, H2, and H3); morphology, coexistance, and development of the histaminergic neuron system; electrophysiological studies on vertebrate and invertebrate neurons; as well as the functions of the histamine neurons.
Together with the two previous volumes of the Handbook of Experimental Pharmacology on histamine and antihistamines the present publication yields a picture of a still rapidly developing field of research. New techniques and new experimental approaches have brought us new knowledge and deeper insight into the biomedical significance of histamine, even if many questions remain to be answered about the functional and medical implications of this old biogenic amine. The present volume covers the progress in histamine research during the past two decades. A significant chapter concerns techniques for histamine determination. As the result of a consensus meeting in Munich in December 1988, a panel of eminent specialists arrived at common recommendations as to the usefulness of the available histamine assays for the most common experimental biomedical conditions. The heterogeneity of mast cells, with great differences in their reactivity to various stimuli, has become apparent, not only among species but also among the tissues of a species. New informa tion is presented about the mechanism of exocytosis. The old questions about the role of histamine in the mechanism of gastric secretion and in cardio vascular and respiratory functions have been studied with new techniques, and the role of HI and H2 receptors discussed. New observations have been made on the occurrence and possible functions of histaminergic neurons and histamine receptors in CNS where a new type of receptor, the H , seems to 3 be widely represented.
The enteric nervous system (ENS) is a complex neural network embedded in the gut wall that orchestrates the reflex behaviors of the intestine. The ENS is often referred to as the “little brain” in the gut because the ENS is more similar in size, complexity and autonomy to the central nervous system (CNS) than other components of the autonomic nervous system. Like the brain, the ENS is composed of neurons that are surrounded by glial cells. Enteric glia are a unique type of peripheral glia that are similar to astrocytes of the CNS. Yet enteric glial cells also differ from astrocytes in many important ways. The roles of enteric glial cell populations in the gut are beginning to come to light and recent evidence implicates enteric glia in almost every aspect of gastrointestinal physiology and pathophysiology. However, elucidating the exact mechanisms by which enteric glia influence gastrointestinal physiology and identifying how those roles are altered during gastrointestinal pathophysiology remain areas of intense research. The purpose of this e-book is to provide an introduction to enteric glial cells and to act as a resource for ongoing studies on this fascinating population of glia. Table of Contents: Introduction / A Historical Perspective on Enteric Glia / Enteric Glia: The Astroglia of the Gut / Molecular Composition of Enteric Glia / Development of Enteric Glia / Functional Roles of Enteric Glia / Enteric Glia and Disease Processes in the Gut / Concluding Remarks / References / Author Biography