Download Free Frontiers In Electromagnetics Book in PDF and EPUB Free Download. You can read online Frontiers In Electromagnetics and write the review.

"FRONTIERS IN ELECTROMAGNETICS is the first all-in-one resource to bring in-depth original papers on today's major advances in long-standing electromagnetics problems. Highly regarded editors Douglas H. Werner and Raj Mittra have meticulously selected new contributed papers from preeminent researchers in the field to provide state-of-the-art discussions on emerging areas of electromagnetics. Antenna and microwave engineers and students will find key insights into current trends and techniques of electromagnetics likely to shape future directions of this increasingly important topic. Each chapter includes a comprehensive analysis and ample references on innovative subjects that range from combining electromagnetic theory with mathematical concepts to the most recent techniques in electromagnetic optimization and estimation. The contributors also present the latest developments in analytical and numerical methods for solving electromagnetics problems. With a level of expertise unmatched in the field, FRONTIERS IN ELECTROMAGNETICS provides readers with a solid foundation to understand this rapidly changing area of technology. Topics covering fast-developing applications in electromagnetics include: * Fractal electrodynamics, fractal antennas and arrays, and scattering from fractally rough surfaces * Knot electrodynamics * The role of group theory and symmetry * Fractional calculus * Lommel and multiple expansions. Professors: To request an examination copy simply e-mail [email protected]." Sponsored by: IEEE Microwave Theory and Techniques Society, IEEE Antennas and Propagation Society.
Written by the leading experts in the field, this text provides systematic coverage of the theory, physics, functional designs, and engineering applications of advanced engineered electromagnetic surfaces. All the essential topics are included, from the fundamental theorems of surface electromagnetics, to analytical models, general sheet transmission conditions (GSTC), metasurface synthesis, and quasi-periodic analysis. A plethora of examples throughout illustrate the practical applications of surface electromagnetics, including gap waveguides, modulated metasurface antennas, transmit arrays, microwave imaging, cloaking, and orbital angular momentum (OAM ) beam generation, allowing readers to develop their own surface electromagnetics-based devices and systems. Enabling a fully comprehensive understanding of surface electromagnetics, this is an invaluable text for researchers, practising engineers and students working in electromagnetics antennas, metasurfaces and optics.
The primary objective of this book is to offer a review of vector calculus needed for the physical sciences and engineering. This review includes necessary excursions into tensor analysis intended as the reader's first exposure to tensors, making aspects of tensors understandable at the undergraduate level.
This book systematically introduces electromagnetic theories and their applications in practice: electrostatic energy, Poynting theorem, the polarization of waves, the conservation law, the electromagnetic symmetry, the conformal mapping method, the electromagnetic loss. The parameters and theorems of electromagnetic theories are discussed in detail, making the book an essential reference for researchers, and engineers in electromagnetics field.
Classical Electrodynamics captures Schwinger's inimitable lecturing style, in which everything flows inexorably from what has gone before. Novel elements of the approach include the immediate inference of Maxwell's equations from Coulomb's law and (Galilean) relativity, the use of action and stationary principles, the central role of Green's functions both in statics and dynamics, and, throughout, the integration of mathematics and physics. Thus, physical problems in electrostatics are used to develop the properties of Bessel functions and spherical harmonics. The latter portion of the book is devoted to radiation, with rather complete treatments of synchrotron radiation and diffraction, and the formulation of the mode decomposition for waveguides and scattering. Consequently, the book provides the student with a thorough grounding in electrodynamics in particular, and in classical field theory in general, subjects with enormous practical applications, and which are essential prerequisites for the study of quantum field theory.An essential resource for both physicists and their students, the book includes a ?Reader's Guide,? which describes the major themes in each chapter, suggests a possible path through the book, and identifies topics for inclusion in, and exclusion from, a given course, depending on the instructor's preference. Carefully constructed problems complement the material of the text, and introduce new topics. The book should be of great value to all physicists, from first-year graduate students to senior researchers, and to all those interested in electrodynamics, field theory, and mathematical physics.The text for the graduate classical electrodynamics course was left unfinished upon Julian Schwinger's death in 1994, but was completed by his coauthors, who have brilliantly recreated the excitement of Schwinger's novel approach.
Electromagnetics for Engineering Students starts with an introduction to vector analysis and progressive chapters provide readers with information about dielectric materials, electrostatic and magnetostatic fields, as well as wave propagation in different situations. Each chapter is supported by many illustrative examples and solved problems which serve to explain the principles of the topics and enhance the knowledge of students. In addition to the coverage of classical topics in electromagnetics, the book explains advanced concepts and topics such as the application of multi-pole expansion for scalar and vector potentials, an in depth treatment for the topic of the scalar potential including the boundary-value problems in cylindrical and spherical coordinates systems, metamaterials, artificial magnetic conductors and the concept of negative refractive index. Key features of this textbook include: • detailed and easy-to follow presentation of mathematical analyses and problems • a total of 681 problems (162 illustrative examples, 88 solved problems, and 431 end of chapter problems) • an appendix of mathematical formulae and functions Electromagnetics for Engineering Students is an ideal textbook for first and second year engineering students who are learning about electromagnetism and related mathematical theorems.
Accompanying CD-ROM contains a MATLAB tutorial.
Engineers do not have the time to wade through rigorously theoretical books when trying to solve a problem. Beginners lack the expertise required to understand highly specialized treatments of individual topics. This is especially problematic for a field as broad as electromagnetics, which propagates into many diverse engineering fields. The time h
Learn to solve both simple and complex electromagnetic problems with this text’s unique integration of theoretical and mathematical concepts. With the author’s guidance, you’ll discover a broad range of classic and cutting-edge applications across a wide array of fields, including biomedicine, wireless communication, process control, and instrumentation. Case studies, detailed derivations, and 170 fully solved examples deepen your understanding of theory, and help you apply numerical methods to real-world problems.
Emerging Topics in Computational Electromagnetics in Computational Electromagnetics presents advances in Computational Electromagnetics. This book is designed to fill the existing gap in current CEM literature that only cover the conventional numerical techniques for solving traditional EM problems. The book examines new algorithms, and applications of these algorithms for solving problems of current interest that are not readily amenable to efficient treatment by using the existing techniques. The authors discuss solution techniques for problems arising in nanotechnology, bioEM, metamaterials, as well as multiscale problems. They present techniques that utilize recent advances in computer technology, such as parallel architectures, and the increasing need to solve large and complex problems in a time efficient manner by using highly scalable algorithms.