Download Free From The Calculus To Set Theory 1630 1910 Book in PDF and EPUB Free Download. You can read online From The Calculus To Set Theory 1630 1910 and write the review.

From the Calculus to Set Theory traces the development of the calculus from the early seventeenth century through its expansion into mathematical analysis to the developments in set theory and the foundations of mathematics in the early twentieth century. It chronicles the work of mathematicians from Descartes and Newton to Russell and Hilbert and many, many others while emphasizing foundational questions and underlining the continuity of developments in higher mathematics. The other contributors to this volume are H. J. M. Bos, R. Bunn, J. W. Dauben, T. W. Hawkins, and K. Møller-Pedersen.
From the Calculus to Set Theory traces the development of the calculus from the early seventeenth century through its expansion into mathematical analysis to the developments in set theory and the foundations of mathematics in the early twentieth century. It chronicles the work of mathematicians from Descartes and Newton to Russell and Hilbert and many, many others while emphasizing foundational questions and underlining the continuity of developments in higher mathematics. The other contributors to this volume are H. J. M. Bos, R. Bunn, J. W. Dauben, T. W. Hawkins, and K. Møller-Pedersen.
Xll Russell's published works include more than sixty books, several unpublished manuscripts, many hundreds of articles, dozens of radio and TV interviews and films, covering a wide spectrum of knowledge. His writings embrace discussions and analysis of such diverse topics as social sciences, foundations of mathematics, philosophy of physics, philosophy in general, religion, moral sciences, education, pacifism, natural sciences (including biology and physics), linguistics, statistics, probability, eco nomic theory, history, politics, international affairs and other topics. He corresponded with a large and diverse group of colleagues including both prominent and obscure figures in politics, the arts, humanities and scienc es. Russell's communication with his colleagues began in the late nine teenth century and was especially active through much of the twentieth century. In spite of being one of the most controversial public personali ties of his day (let us not forget that he went to prison twice, was dis missed from Cambridge University and was prevented from teaching at the College of the City of New York), his merits have been recognized and appreciated. He was awarded many medals, diplomas and honors, including the Nobel Prize for Literature in 1950.
An accessible history and philosophical commentary on our notion of infinity. How can the infinite, a subject so remote from our finite experience, be an everyday tool for the working mathematician? Blending history, philosophy, mathematics, and logic, Shaughan Lavine answers this question with exceptional clarity. Making use of the mathematical work of Jan Mycielski, he demonstrates that knowledge of the infinite is possible, even according to strict standards that require some intuitive basis for knowledge. Praise for Understanding the Infinite “Understanding the Infinite is a remarkable blend of mathematics, modern history, philosophy, and logic, laced with refreshing doses of common sense. It is a potted history of, and a philosophical commentary on, the modern notion of infinity as formalized in axiomatic set theory . . . An amazingly readable [book] given the difficult subject matter. Most of all, it is an eminently sensible book. Anyone who wants to explore the deep issues surrounding the concept of infinity . . . will get a great deal of pleasure from it.” —Ian Stewart, New Scientist “How, in a finite world, does one obtain any knowledge about the infinite? Lavine argues that intuitions about the infinite derive from facts about the finite mathematics of indefinitely large size . . . The issues are delicate, but the writing is crisp and exciting, the arguments original. This book should interest readers whether philosophically, historically, or mathematically inclined, and large parts are within the grasp of the general reader. Highly recommended.” —D. V. Feldman, Choice
Anyone who has pondered the limitlessness of space and time, or the endlessness of numbers, or the perfection of God will recognize the special fascination of this question. Adrian Moore's historical study of the infinite covers all its aspects, from the mathematical to the mystical.
This compact, well-written history covers major mathematical ideas and techniques from the ancient Near East to 20th-century computer theory, surveying the works of Archimedes, Pascal, Gauss, Hilbert, and many others. "The author's ability as a first-class historian as well as an able mathematician has enabled him to produce a work which is unquestionably one of the best." — Nature.
This compact, well-written history — first published in 1948, and now in its fourth revised edition — describes the main trends in the development of all fields of mathematics from the first available records to the middle of the 20th century. Students, researchers, historians, specialists — in short, everyone with an interest in mathematics — will find it engrossing and stimulating. Beginning with the ancient Near East, the author traces the ideas and techniques developed in Egypt, Babylonia, China, and Arabia, looking into such manuscripts as the Egyptian Papyrus Rhind, the Ten Classics of China, and the Siddhantas of India. He considers Greek and Roman developments from their beginnings in Ionian rationalism to the fall of Constantinople; covers medieval European ideas and Renaissance trends; analyzes 17th- and 18th-century contributions; and offers an illuminating exposition of 19th century concepts. Every important figure in mathematical history is dealt with — Euclid, Archimedes, Diophantus, Omar Khayyam, Boethius, Fermat, Pascal, Newton, Leibniz, Fourier, Gauss, Riemann, Cantor, and many others. For this latest edition, Dr. Struik has both revised and updated the existing text, and also added a new chapter on the mathematics of the first half of the 20th century. Concise coverage is given to set theory, the influence of relativity and quantum theory, tensor calculus, the Lebesgue integral, the calculus of variations, and other important ideas and concepts. The book concludes with the beginnings of the computer era and the seminal work of von Neumann, Turing, Wiener, and others. "The author's ability as a first-class historian as well as an able mathematician has enabled him to produce a work which is unquestionably one of the best." — Nature Magazine.
There are many mathematics textbooks on real analysis, but they focus on topics not readily helpful for studying economic theory or they are inaccessible to most graduate students of economics. Real Analysis with Economic Applications aims to fill this gap by providing an ideal textbook and reference on real analysis tailored specifically to the concerns of such students. The emphasis throughout is on topics directly relevant to economic theory. In addition to addressing the usual topics of real analysis, this book discusses the elements of order theory, convex analysis, optimization, correspondences, linear and nonlinear functional analysis, fixed-point theory, dynamic programming, and calculus of variations. Efe Ok complements the mathematical development with applications that provide concise introductions to various topics from economic theory, including individual decision theory and games, welfare economics, information theory, general equilibrium and finance, and intertemporal economics. Moreover, apart from direct applications to economic theory, his book includes numerous fixed point theorems and applications to functional equations and optimization theory. The book is rigorous, but accessible to those who are relatively new to the ways of real analysis. The formal exposition is accompanied by discussions that describe the basic ideas in relatively heuristic terms, and by more than 1,000 exercises of varying difficulty. This book will be an indispensable resource in courses on mathematics for economists and as a reference for graduate students working on economic theory.
Entries on philosophers, schools of thought, subjects, theories, debates, concepts, pratical issues.