Download Free From Synapses To Rules Book in PDF and EPUB Free Download. You can read online From Synapses To Rules and write the review.

One high-level ability of the human brain is to understand what it has learned. This seems to be the crucial advantage in comparison to the brain activity of other primates. At present we are technologically almost ready to artificially reproduce human brain tissue, but we still do not fully understand the information processing and the related biological mechanisms underlying this ability. Thus an electronic clone of the human brain is still far from being realizable. At the same time, around twenty years after the revival of the connectionist paradigm, we are not yet satisfied with the typical subsymbolic attitude of devices like neural networks: we can make them learn to solve even difficult problems, but without a clear explanation of why a solution works. Indeed, to widely use these devices in a reliable and non elementary way we need formal and understandable expressions of the learnt functions. of being tested, manipulated and composed with These must be susceptible other similar expressions to build more structured functions as a solution of complex problems via the usual deductive methods of the Artificial Intelligence. Many effort have been steered in this directions in the last years, constructing artificial hybrid systems where a cooperation between the sub symbolic processing of the neural networks merges in various modes with symbolic algorithms. In parallel, neurobiology research keeps on supplying more and more detailed explanations of the low-level phenomena responsible for mental processes.
This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.
How we raise young children is one of today's most highly personalized and sharply politicized issues, in part because each of us can claim some level of "expertise." The debate has intensified as discoveries about our development-in the womb and in the first months and years-have reached the popular media. How can we use our burgeoning knowledge to assure the well-being of all young children, for their own sake as well as for the sake of our nation? Drawing from new findings, this book presents important conclusions about nature-versus-nurture, the impact of being born into a working family, the effect of politics on programs for children, the costs and benefits of intervention, and other issues. The committee issues a series of challenges to decision makers regarding the quality of child care, issues of racial and ethnic diversity, the integration of children's cognitive and emotional development, and more. Authoritative yet accessible, From Neurons to Neighborhoods presents the evidence about "brain wiring" and how kids learn to speak, think, and regulate their behavior. It examines the effect of the climate-family, child care, community-within which the child grows.
This book consists of five sections. The first section details methods for analyzing both presynaptic and postsynaptic function and emphasizes the molecular aspects of synapses. It describes ongoing studies of neurotransmitter release, voltage- sensitive ion channels, and electronic transmission at gap junctions. The second section focuses on the growing menagerie of neurotransmitters: their catagorization into chemical families, their relation to ion channels, their modulation by second messenger systems and their role in pharmacologic action. The third section considers the important relationship of transmitter diversity and synaptic types to the behavior of actual cellular networks. All of the studies described in these sections point to the necessity of considering interactions between anatomy, chemistry, physiology and pharmacology if synaptic function is to be understood at any one of these levels of analysis.
The brain ... There is no other part of the human anatomy that is so intriguing. How does it develop and function and why does it sometimes, tragically, degenerate? The answers are complex. In Discovering the Brain, science writer Sandra Ackerman cuts through the complexity to bring this vital topic to the public. The 1990s were declared the "Decade of the Brain" by former President Bush, and the neuroscience community responded with a host of new investigations and conferences. Discovering the Brain is based on the Institute of Medicine conference, Decade of the Brain: Frontiers in Neuroscience and Brain Research. Discovering the Brain is a "field guide" to the brainâ€"an easy-to-read discussion of the brain's physical structure and where functions such as language and music appreciation lie. Ackerman examines: How electrical and chemical signals are conveyed in the brain. The mechanisms by which we see, hear, think, and pay attentionâ€"and how a "gut feeling" actually originates in the brain. Learning and memory retention, including parallels to computer memory and what they might tell us about our own mental capacity. Development of the brain throughout the life span, with a look at the aging brain. Ackerman provides an enlightening chapter on the connection between the brain's physical condition and various mental disorders and notes what progress can realistically be made toward the prevention and treatment of stroke and other ailments. Finally, she explores the potential for major advances during the "Decade of the Brain," with a look at medical imaging techniquesâ€"what various technologies can and cannot tell usâ€"and how the public and private sectors can contribute to continued advances in neuroscience. This highly readable volume will provide the public and policymakersâ€"and many scientists as wellâ€"with a helpful guide to understanding the many discoveries that are sure to be announced throughout the "Decade of the Brain."
Hebb's postulate provided a crucial framework to understand synaptic alterations underlying learning and memory. Hebb's theory proposed that neurons that fire together, also wire together, which provided the logical framework for the strengthening of synapses. Weakening of synapses was however addressed by "not being strengthened", and it was only later that the active decrease of synaptic strength was introduced through the discovery of long-term depression caused by low frequency stimulation of the presynaptic neuron. In 1994, it was found that the precise relative timing of pre and postynaptic spikes determined not only the magnitude, but also the direction of synaptic alterations when two neurons are active together. Neurons that fire together may therefore not necessarily wire together if the precise timing of the spikes involved are not tighly correlated. In the subsequent 15 years, Spike Timing Dependent Plasticity (STDP) has been found in multiple brain brain regions and in many different species. The size and shape of the time windows in which positive and negative changes can be made vary for different brain regions, but the core principle of spike timing dependent changes remain. A large number of theoretical studies have also been conducted during this period that explore the computational function of this driving principle and STDP algorithms have become the main learning algorithm when modeling neural networks. This Research Topic will bring together all the key experimental and theoretical research on STDP.
Written by an award-winning developmental neuroscientist, this is a comprehensive and cutting-edge account of the latest research on the adolescent brain.
This detailed volume collects protocols for experimentation into how neurons connect to produce the extraordinary functionalities of the nervous system. Contributed by experts and pioneers in their respective techniques, the book covers synapses in the brain and in culture, their constituents, their structures, their dynamics, and the assemblies they form, all in the structure of a laboratory guide. Written for the highly successful Methods in Molecular Biology series, chapters include brief introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Synapse Development: Methods and Protocols serves as an ideal guide to minimizing the barrier to entry for the integration of new approaches with existing expertise, producing syntheses that will foster novel perspectives on the many ways in which synapses form, transform, and transmit.
The prefrontal cortex is regarded by many as the executive controller, which determines appropriate coupling between a sensory input and motor output to meet environmental demands. Our cognitive ability heavily relies on the function of the prefrontal cortex. Prefrontal Cortex: From Synaptic Plasticity to Cognition takes an interdisciplinary approach to characterize the function of the anterior portion of the frontal lobe in rodents and human and non-human primates. The topics in this volume are diverse. They range from membrane properties of prefrontal neurons to cognitive psychology and attempt to encompass domains of the prefrontal field in an effort to provide the bigger picture.
Brain aminergic pathways are organized in parallel and interacting systems, which support a range of functions, from homoeostatic regulations to cognitive, and motivational processes. Despite overlapping functional influences, dopamine, serotonin, noradrenaline and histamine systems provide different contributions to these processes. The histaminergic system, long ignored as a major regulator of the sleep-wake cycle, has now been fully acknowledged also as a major coordinator of attention, learning and memory, decision making. Although histaminergic neurons project widely to the whole brain, they are functionally heterogeneous, a feature which may provide the substrate for differential regulation, in a region-specific manner, of other neurotransmitter systems. Neurochemical preclinical studies have clearly shown that histamine interacts and modulates the release of neurotransmitters that are recognized as major modulators of cognitive processing and motivated behaviours. As a consequence, the histamine system has been proposed as a therapeutic target to treat sleep-wake disorders and cognitive dysfunctions that accompany neurodegenerative and neuroinflammatory pathologies. Last decades have witnessed an unexpected explosion of interest in brain histamine system, as new receptors have been discovered and selective ligands synthesised. Nevertheless, the complete picture of the histamine systems fine-tuning and its orchestration with other pathways remains rather elusive. This Research Topic is intended to offer an inter-disciplinary forum that will improve our current understanding of the role of brain histamine and provide the fundamentals necessary to drive innovation in clinical practice and to improve the management and treatment of neurological disorders.