Download Free From Solid State Chemistry To Heterogeneous Catalysis Book in PDF and EPUB Free Download. You can read online From Solid State Chemistry To Heterogeneous Catalysis and write the review.

Heterogeneous catalysis is deeply founded on solid state chemistry, but the relationship between the two often appears to be elusive in many cases. It is generally difficult to relate the allusion of symmetry to the crystal structure and the defect chemistry or acid-base properties to the surface reconstruction and extended defects that in most cases are the basis of physicochemical properties and solids applications. This book provides insights into solid state chemistry in order to widen the vision of heterogeneous catalysis. It covers a broad range of solid state related topics, including symmetry and structure organization, bonding, and methods for structure elucidation, as well as defects formation and their implications in heterogeneous catalysis.
Heterogeneous catalysis is deeply founded on solid state chemistry, but the relationship between the two often appears to be elusive in many cases. It is generally difficult to relate the allusion of symmetry to the crystal structure and the defect chemistry or acid-base properties to the surface reconstruction and extended defects that in most cases are the basis of physicochemical properties and solids applications. This book provides insights into solid state chemistry in order to widen the vision of heterogeneous catalysis. It covers a broad range of solid state related topics, including symmetry and structure organization, bonding, and methods for structure elucidation, as well as defects formation and their implications in heterogeneous catalysis.
Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for catalysts), mixed and complex oxides and salts, halides, sulfides, carbides, and unsupported and supported metals are all considered. The book encompasses applications in industrial chemistry, refinery, petrochemistry, biomass conversion, energy production, and environmental protection technologies. - Provides a systematic and clear approach of the synthesis, solid state chemistry and surface chemistry of all solid state catalysts - Covers widely used instrumental techniques for catalyst characterization, such as x-ray photoelectron spectroscopy, scanning electron microscopy, and more - Includes characterization methods and lists all catalytic behavior of the solid state catalysts - Discusses new developments in nanocatalysts and their advantages over conventional catalysts
Written by one of the world's leading experts on the topic, this advanced textbook is the perfect introduction for newcomers to this exciting field. Concise and clear, the text focuses on such key aspects as kinetics, reaction mechanism and surface reactivity, concentrating on the essentials. The author also covers various catalytic systems, catalysis by design, and activation-deactivation. A website with supplementary material offers additional figures, original material and references.
This two-volume book provides an overview of physical techniques used to characterize the structure of solid materials, on the one hand, and to investigate the reactivity of their surface, on the other. Therefore this book is a must-have for anyone working in fields related to surface reactivity. Among the latter, and because of its most important industrial impact, catalysis has been used as the directing thread of the book. After the preface and a general introduction to physical techniques by M. Che and J.C. Vedrine, two overviews on physical techniques are presented by G. Ertl and Sir J.M. Thomas for investigating model catalysts and porous catalysts, respectively. The book is organized into four parts: Molecular/Local Spectroscopies, Macroscopic Techniques, Characterization of the Fluid Phase (Gas and/ or Liquid), and Advanced Characterization. Each chapter focuses upon the following important themes: overview of the technique, most important parameters to interpret the experimental data, practical details, applications of the technique, particularly during chemical processes, with its advantages and disadvantages, conclusions.
Solid-State NMR Characterization of Heterogeneous Catalysts and Catalytic Reactions provides a comprehensive account of state-of-the-art solid-state NMR techniques and the application of these techniques in heterogeneous catalysts and related catalytic reactions. It includes an introduction to the basic theory of solid-state NMR and various frequently used techniques. Special emphasis is placed on characterizing the framework and pore structure, active site, guest-host interaction, and synthesis mechanisms of heterogeneous catalysts using multinuclear one- and two-dimensional solid-sate NMR spectroscopy. Additionally, various in-situ solid-state NMR techniques and their applications in investigation of the mechanism of industrially important catalytic reactions are also discussed. Both the fundamentals and the latest research results are covered, making the book suitable as a reference guide for both experienced researchers in and newcomers to this field. Feng Deng is a Professor at Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences.
Hydrotreating catalysis with transition metal sulphides is one of the most important areas of industrial heterogeneous catalysis. The present book deals with the chemical and catalytic aspects of transition metal sulphides, focusing on their use in hydrotreating catalysis. The book¿s 12 chapters present reviews of solid-state, coordination and organometallic chemistry, surface science and spectroscopic studies, quantum chemical calculations, catalytic studies with model and real catalysts, as well as refinery processes. A presentation of state-of-the-art background to pertinent work in the field. Can be used as an introduction to the chemical and catalytic properties of transition metal sulphides as well as an advanced level reference.
This long-awaited second edition of the successful introduction to the fundamentals of heterogeneous catalysis is now completely revised and updated. Written by internationally acclaimed experts, this textbook includes fundamentals of adsorption, characterizing catalysts and their surfaces, the significance of pore structure and surface area, solid-state and surface chemistry, poisoning, promotion, deactivation and selectivity of catalysts, as well as catalytic process engineering. A final section provides a number of examples and case histories. With its color and numerous graphics plus references to help readers to easily find further reading, this is a pivotal work for an understanding of the principles involved.
Solid catalysts play a fundamental role in all areas between basic research and industrial applications. This book offers a large amount of information about the preparation of solid catalysts. All types of solid catalysts and all important aspects of their preparation are discussed. The highly topical contributions are written by leading experts in disciplines ranging from solid state, interface and solution chemistry to industrial engineering. The straightforward presentation of the material and the comprehensive coverage make this book an essential and indispensible tool for every scientist and engineer working with solid catalysts.
This volume looks at modern approaches to catalysis and reviews the extensive literature. Chapters highlight application of 2D materials in biomass conversion catalysis, plasmonic photocatalysis, catalytic demonstration of mesoporosity in the hierarchical zeolite and the effect of surface phase oxides on supported metals and catalysis. Looking to the future a chapter on ab initio machine learning for accelerating catalytic materials discovery is included. Appealing broadly to researchers in academia and industry, these illustrative chapters bridge the gap from academic studies in the laboratory to practical applications in industry not only for catalysis field but also for environmental protection. Other chapters with an industrial perspective include heterogeneous and homogeneous catalytic routes for vinyl acetate synthesis, catalysis for production of jet fuel from renewable sources by HDO/HDC and microwave-assisted catalysis for fuel conversion. Chemical reactions in ball mills is also explored. The book will be of great benefit to any researcher wanting a succinct reference on developments in this area now and looking to the future.