Download Free From Plant Meristem To Crop Yield Book in PDF and EPUB Free Download. You can read online From Plant Meristem To Crop Yield and write the review.

Photosynthesis: Physiology and Metabolism is the we have concentrated on the acquisition and ninth volume in theseries Advances in Photosynthesis metabolism of carbon. However, a full understanding (Series Editor, Govindjee). Several volumes in this of reactions involved in the conversion of to series have dealt with molecular and biophysical sugars requires an integrated view of metabolism. aspects of photosynthesis in the bacteria, algae and We have, therefore, commissioned international cyanobacteria, focussing largely on what have been authorities to write chapters on, for example, traditionally, though inaccurately, termed the ‘light interactionsbetween carbon and nitrogen metabolism, reactions’(Volume 1, The Molecular Biology of on respiration in photosynthetic tissues and on the Cyanobacteria;Volume2,AnoxygenicPhotosynthetic control of gene expression by metabolism. Photo- Bacteria, Volume 3, Biophysical Techniques in synthetic carbon assimilation is also one of the most Photosynthesis and Volume 7, The Molecular Biology rapid metabolic processes that occurs in plant cells, of the Chloroplasts and Mitochondria in Chlamy- and therefore has to be considered in relation to domonas). Volume 4 dealt with Oxygenic Photo- transport, whether it be the initial uptake of carbon, synthesis: The Light Reactions, and volume 5 with intracellular transport between organelles, inter- Photosynthesis and the Environment, whereas the cellular transport, as occurs in plants, or transport structure and function of lipids in photosynthesis of photosynthates through and out of the leaf. All was covered in Volume 6 of this series: Lipids in these aspects of transport are also covered in the Photosynthesis: Structure, Function and Genetics, book.
Since photosynthetic performance is a fundamental determinant of yield in the vast majority of crops, an understanding of the factors limiting photosynthetic productivity has a crucial role to play in crop improvement programmes. Photosynthesis, unlike the majority of physiological processes in plants, has been the subject of extensive studies at the molecular level for many years. This reductionist approach has resulted in the development of an impressive and detailed understanding of the mechanisms of light capture, energy transduction and carbohydrate biosynthesis, processes that are clearly central to the success of the plant and the productivity of crops. This volume examines in the widest context the factors determining the photosynthetic performance of crops. The emphasis throughout the book is on the setting for photosynthesis rather than the fundamental process itself. The book will prove useful to a wide range of plant scientists, and will encourage a more rapid integration of disciplines in the quest to understand and improve the productivity of crops by the procedures of classical breeding and genetic manipulation.
This book integrates many fields to help students understand the complexity of the basic science that underlies crop and food production.
Highlighting effective, analytical functions that have been found useful for the comparison of alternative management techniques to maximize water and nutrient resources, this reference describes the application of viable mathematical models in data analysis to increase crop growth and yields. Featuring solutions to various differential equations, the book covers the characteristics of the functions related to the phenomenological growth model. Including more than 1300 literature citations, display equations, tables, and figures and outlining an approach to mathematical crop modeling, Mathematical Models of Crop Growth and Yield will prove an invaluable resource.
Crops experience an assortment of environmental stresses which include abiotic viz., drought, water logging, salinity, extremes of temperature, high variability in radiation, subtle but perceptible changes in atmospheric gases and biotic viz., insects, birds, other pests, weeds, pathogens (viruses and other microbes). The ability to tolerate or adapt and overwinter by effectively countering these stresses is a very multifaceted phenomenon. In addition, the inability to do so which renders the crops susceptible is again the result of various exogenous and endogenous interactions in the ecosystem. Both biotic and abiotic stresses occur at various stages of plant development and frequently more than one stress concurrently affects the crop. Stresses result in both universal and definite effects on plant growth and development. One of the imposing tasks for the crop researchers globally is to distinguish and to diminish effects of these stress factors on the performance of crop plants, especially with respect to yield and quality of harvested products. This is of special significance in view of the impending climate change, with complex consequences for economically profitable and ecologically and environmentally sound global agriculture. The challenge at the hands of the crop scientist in such a scenario is to promote a competitive and multifunctional agriculture, leading to the production of highly nourishing, healthy and secure food and animal feed as well as raw materials for a wide variety of industrial applications. In order to successfully meet this challenge researchers have to understand the various aspects of these stresses in view of the current development from molecules to ecosystems. The book will focus on broad research areas in relation to these stresses which are in the forefront in contemporary crop stress research.
Overview; Morphology and physiology of rice ratoons; Rice ratooning in practice; Evaluation and potential of rice ratooning; Cultural practices; Genetics and varietal improvement.
Explore an in-depth and insightful collection of resources discussing various aspects of root structure and function in intensive agricultural systems The Root Systems in Sustainable Agricultural Intensification delivers a comprehensive treatment of state-of-the-art concepts in the theoretical and practical aspects of agricultural management to enhance root system architecture and function. The book emphasizes the agricultural measures that enhance root capacity to develop and function under a range of water and nutrient regimes to maximize food, feed, and fibre production, as well as minimize undesirable water and nutrient losses to the environment. This reference includes resources that discuss a variety of soil, plant, agronomy, farming system, breeding, molecular and modelling aspects to the subject. It also discusses strategies and mechanisms that underpin increased water- and nutrient-use efficiency and combines consideration of natural and agricultural systems to show the continuity of traits and mechanisms. Finally, the book explores issues related to the global economy as well as widespread social issues that arise from, or are underpinned by, agricultural intensification. Readers will also benefit from the inclusion of: A thorough introduction to sustainable intensification, including its meaning, the need for the technology, components, and the role of root systems Exploration of the dynamics of root systems in crop and pasture genotypes over the last 100 years Discussion of the interplay between root structure and function with soil microbiome in enhancing efficiency of nitrogen and phosphorus acquisition Evaluation of water uptake in drying soil, including balancing supply and demand Perfect for agronomists, horticulturalists, plant and soil scientists, breeders, and soil microbiologists, The Root Systems in Sustainable Agricultural Intensification will also earn a place in the libraries of advanced undergraduate and postgraduate students in this field who seek a one-stop reference in the area of root structure and function.