Download Free From Photons To Higgs A Story Of Light 2nd Edition Book in PDF and EPUB Free Download. You can read online From Photons To Higgs A Story Of Light 2nd Edition and write the review.

This book presents a brief introduction to the quantum field theory of the Standard Model for quarks and leptons. With minimal use of mathematics, it covers the basics of quantum field theory, local gauge field theory, spontaneous symmetry breaking mechanism, the Higgs mechanism and quantum chromodynamics.From the time when the first edition was published until today, the field of particle physics has seen some major break-through with the possible discovery of Higgs particle, also known as the Higgs boson. In the second edition, the famous Higgs mechanism is included to explain the symmetry breaking in the Standard Model and the origin of mass, and all of this is explained in high-school level algebra.Aimed at both scientists and non-specialists, it requires only some rudimentary knowledge of the Lagrangian and Hamiltonian formulation of Newtonian mechanics as well as a basic understanding of the special theory of relativity and quantum mechanics to enjoy this book.
This book focuses on the gradual formation of the concept of ‘light quanta’ or ‘photons’, as they have usually been called in English since 1926. The great number of synonyms that have been used by physicists to denote this concept indicates that there are many different mental models of what ‘light quanta’ are: simply finite, ‘quantized packages of energy’ or ‘bullets of light’? ‘Atoms of light’ or ‘molecules of light’? ‘Light corpuscles’ or ‘quantized waves’? Singularities of the field or spatially extended structures able to interfere? ‘Photons’ in G.N. Lewis’s sense, or as defined by QED, i.e. virtual exchange particles transmitting the electromagnetic force? The term ‘light quantum’ made its first appearance in Albert Einstein’s 1905 paper on a “heuristic point of view” to cope with the photoelectric effect and other forms of interaction of light and matter, but the mental model associated with it has a rich history both before and after 1905. Some of its semantic layers go as far back as Newton and Kepler, some are only fully expressed several decades later, while others initially increased in importance then diminished and finally vanished. In conjunction with these various terms, several mental models of light quanta were developed—six of them are explored more closely in this book. It discusses two historiographic approaches to the problem of concept formation: (a) the author’s own model of conceptual development as a series of semantic accretions and (b) Mark Turner’s model of ‘conceptual blending’. Both of these models are shown to be useful and should be explored further. This is the first historiographically sophisticated history of the fully fledged concept and all of its twelve semantic layers. It systematically combines the history of science with the history of terms and a philosophically inspired history of ideas in conjunction with insights from cognitive science.
We have lost one of the giants of the twentieth century physics when Yoichiro Nambu passed away in July, 2015, at the age of 94.Today's Standard Model, though still incomplete in many respects, is the culmination of the most successful theory of the Universe to date, and it is built upon foundations provided by discoveries made by Nambu in the 1960s: the mechanism of spontaneously broken symmetry in Nature (with G Jona-Lasinio) and the hidden new SU(3) symmetry of quarks and gluons (with M-Y Han).In this volume honoring Nambu's memory, World Scientific Publishing presents a unique collection of papers written by his former colleagues, collaborating researchers and former students and associates, not only citing Nambu's great contributions in physics but also many personal and private reminiscences, some never told before. This volume also contains the very last scientific writing by Professor Nambu himself, discussing the development of particle physics.This book is a volume for all who benefited not only from Nambu's contributions toward understanding the Universe but also his warm and kind persona. It is a great addition to the history of contemporary physics.
This book is the first of its kind devoted to the key role played by light and electromagnetic radiation in the universe. Readers are introduced to philosophical hypotheses such as the economy, symmetry and the universality of natural laws, and are then guided to practical consequences such as the rules of geometrical optics and even Einstein's well-known but mysterious relationship, E = mc2. Most chapters feature a pen picture of the life and character of a relevant scientific figure. These ‘Historical Interludes’ include, among others, Galileo's conflicts with the Inquisition, Fourier's taunting of the guillotine, Neils Bohr and World War II, and the unique character of Richard Feynman.The second edition has been revised and made more accessible to the general reader. Whenever possible, the mathematical material of the first edition has been replaced by appropriate text to give a verbal account of the mystery of the phenomenon of light and how its understanding has developed from pre-historic to present times. The emphasis is on reading for interest and enjoyment; formulae or equations which underpin and reinforce the argument are presented in a form which does not interfere with the flow of the text.The book will be of interest to students and teachers, as well as general readers interested in physics.
This book is the first of its kind devoted to the key role played by light and electromagnetic radiation in the universe. Readers are introduced to philosophical hypotheses such as the economy, symmetry and the universality of natural laws, and are then guided to practical consequences such as the rules of geometrical optics and even Einstein''s well-known but mysterious relationship, E = mc2. Most chapters feature a pen picture of the life and character of a relevant scientific figure. These OCyHistorical InterludesOCO include, among others, Galileo''s conflicts with the Inquisition, Fourier''s taunting of the guillotine, Neils Bohr and World War II, and the unique character of Richard Feynman.The second edition has been revised and made more accessible to the general reader. Whenever possible, the mathematical material of the first edition has been replaced by appropriate text to give a verbal account of the mystery of the phenomenon of light and how its understanding has developed from pre-historic to present times. The emphasis is on reading for interest and enjoyment; formulae or equations which underpin and reinforce the argument are presented in a form which does not interfere with the flow of the text.The book will be of interest to students and teachers, as well as general readers interested in physics.
This is an elementary introduction to the fascinating world of Physics. The primary purpose of this book is to increase students' interest in Physics. Through it, Shuvadip wants to emphasize what is truly interesting about Physics. The subject matter is presented in a very simple way without mathematical calculations, so that, everyone can understand it easily.
This book presents the essential aspects of relativistic quantum field theory, with minimal use of mathematics. It covers the development of quantum field theory from the original quantization of electromagnetic field to the gauge field theory of interactions among quarks and leptons.Aimed at both scientists and non-specialists, it requires only some rudimentary knowledge of the Lagrangian and Hamiltonian formulation of Newtonian mechanics and a basic understanding of the special theory of relativity and quantum mechanics.
"Higgs Force cuenta la increíble historia del descubrimiento científico más importante de los últimos 50 años. Comienza con las ideas de los filósofos griegos hace más de dos mil años, y nos lleva a un viaje a través de muchos de los descubrimientos científicos más importantes de la historia antes de ponernos al día con el descubrimiento de la partícula de Higgs en julio de 2012."--P. [4] de cubierta.
"The Higgs boson ... is the key to understanding why mass exists and how atoms are possible. After billions of dollars and decades of effort by more than six thousand researchers at the Large Hadron Collider in Switzerland--a doorway is opening into the mind-boggling world of dark matter and beyond. Caltech physicist and acclaimed writer Sean Carroll explains both the importance of the Higgs boson and the ultimately human story behind the greatest scientific achievement of our time"--Publisher
Two leading physicists discuss the importance of the Higgs Boson, the future of particle physics, and the mysteries of the universe yet to be unraveled. On July 4, 2012, the long-sought Higgs Boson--aka "the God Particle"--was discovered at the world's largest particle accelerator, the LHC, in Geneva, Switzerland. On March 14, 2013, physicists at CERN confirmed it. This elusive subatomic particle forms a field that permeates the entire universe, creating the masses of the elementary particles that are the basic building blocks of everything in the known world--from viruses to elephants, from atoms to quasars. Starting where Nobel Laureate Leon Lederman's bestseller The God Particle left off, this incisive new book explains what's next. Lederman and Hill discuss key questions that will occupy physicists for years to come:* Why were scientists convinced that something like the "God Particle" had to exist?* What new particles, forces, and laws of physics lie beyond the "God Particle"?* What powerful new accelerators are now needed for the US to recapture a leadership role in science and to reach "beyond the God Particle," such as Fermilab's planned Project-X and the Muon Collider? Using thoughtful, witty, everyday language, the authors show how all of these intriguing questions are leading scientists ever deeper into the fabric of nature. Readers of The God Particle will not want to miss this important sequel.