Download Free From Gravity To Thermal Gauge Theories The Ads Cft Correspondence Book in PDF and EPUB Free Download. You can read online From Gravity To Thermal Gauge Theories The Ads Cft Correspondence and write the review.

The AdS/CFT correspondence is a powerful tool in studying strongly coupled phenomena in gauge field theories, using results from a weakly coupled gravity background studied in the realm of string theory. AdS/CFT was first successfully applied to the study of phenomena such as the quark-gluon plasma produced in heavy ions collisions. Soon it was realized that its applicability can be extended, in a more phenomenological approach, to condensed matter systems and to systems described by fluid dynamics. The set of tutorial reviews in this volume is intended as an introduction to and survey of the principle of the AdS/CFT correspondence in its field/string theoretic formulation, its applicability to holographic QCD and to heavy ions collisions, and to give a first account of processes in fluid dynamics and condensed matter physics, which can be studied with the use of this principle. Written by leading researchers in the field and cast into the form of a high-level but approachable multi-author textbook, this volume will be of benefit to all postgraduate students, and newcomers from neighboring disciplines wishing to find a comprehensive guide for their future research.
The AdS/CFT correspondence is a powerful tool in studying strongly coupled phenomena in gauge field theories, using results from a weakly coupled gravity background studied in the realm of string theory. AdS/CFT was first successfully applied to the study of phenomena such as the quark-gluon plasma produced in heavy ions collisions. Soon it was realized that its applicability can be extended, in a more phenomenological approach, to condensed matter systems and to systems described by fluid dynamics. The set of tutorial reviews in this volume is intended as an introduction to and survey of the principle of the AdS/CFT correspondence in its field/string theoretic formulation, its applicability to holographic QCD and to heavy ions collisions, and to give a first account of processes in fluid dynamics and condensed matter physics, which can be studied with the use of this principle. Written by leading researchers in the field and cast into the form of a high-level but approachable multi-author textbook, this volume will be of benefit to all postgraduate students, and newcomers from neighboring disciplines wishing to find a comprehensive guide for their future research.
The first textbook on this important topic, for graduate students and researchers in particle and condensed matter physics.
Providing a pedagogical introduction to the rapidly developing field of AdS/CFT correspondence, this is one of the first texts to provide an accessible introduction to all the necessary concepts needed to engage with the methods, tools and applications of AdS/CFT. Without assuming anything beyond an introductory course in quantum field theory, it begins by guiding the reader through the basic concepts of field theory and gauge theory, general relativity, supersymmetry, supergravity, string theory and conformal field theory, before moving on to give a clear and rigorous account of AdS/CFT correspondence. The final section discusses the more specialised applications, including QCD, quark-gluon plasma and condensed matter. This book is self-contained and learner-focused, featuring numerous exercises and examples. It is essential reading for both students and researchers across the fields of particle, nuclear and condensed matter physics.
The purpose of this book is to thoroughly prepare the reader for research in string theory at an intermediate level. As such it is not a compendium of results but intended as textbook in the sense that most of the material is organized in a pedagogical and self-contained fashion. Beyond the basics, a number of more advanced topics are introduced, such as conformal field theory, superstrings and string dualities - the text does not cover applications to black hole physics and cosmology, nor strings theory at finite temperatures. End-of-chapter references have been added to guide the reader wishing to pursue further studies or to start research in well-defined topics covered by this book.
The contributions to this volume of the famous summer school in Les Houches cover the recent developments in supersymmetric string theory, the gauge theory/string theory correspondence and string duality. The book is a comprehensive introduction to the recent developments in string/M-theory and quantum gravity.
The goal of this text is to introduce, in a very elementary way, the concept of anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence to condensed matter physicists. This theory relates a gravity theory in a (d+1)-dimensional anti-de Sitter space
In this dissertation I study some properties of field theories at finite temperature using the AdS/CFT correspondence. I present a general proof of an "inheritance principle" satisfied by a weakly coupled SU(N) (or U(N)) gauge theory with adjoint matter on a class of compact manifolds (like S3). In the large N limit, finite temperature correlation functions of gauge invariant single-trace operators in the low temperature phase are related to those at zero temperature by summing over images of each operator in the Euclidean time direction. As a consequence, various non-renormalization theorems of Af = 4 Super Yang-Mills theory on S3 survive at finite temperature. I use the factorization of the worldsheet to isolate the Hagedorn divergences at all orders in the genus expansion and to show that the Hagedorn divergences can be re-summed by introducing double scaling limits. This allows one to extract the effective potential for the thermal scalar. For a string theory in an asymptotic anti-de Sitter (AdS) space time, the same behavior should arise from the boundary YangMills theory. Introducing "vortex" contributions for the boundary theory at finite temperature I will show that this is indeed the case and that Yang-Mills Feynman diagrams with vortices can be identified with contributions from boundaries of moduli space on the string theory side. Finally, I consider the shear viscosity to entropy density ratio in conformal field theories dual to Einstein gravity with curvature square corrections. For generic curvature square corrections I show that the conjectured viscosity bound can be violated. I present the calculation in three different methods in order to check consistency. Gauss-Bonnet gravity is also considered, for any value of the coupling. It is shown that a lower bound (lower than the KSS bound) on the shear viscosity to entropy density ratio is determined by causality in the boundary theory.
Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics.All these issues were discussed at a recent international workshop in Singapore where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories including its historic background, as well as the latest accomplishments in understanding the foundational properties of higher spin physics.