Download Free From Genetics To Mathematics Book in PDF and EPUB Free Download. You can read online From Genetics To Mathematics and write the review.

This volume contains pedagogical and elementary introductions to genetics for mathematicians and physicists as well as to mathematical models and techniques of population dynamics. It also offers a physicist''s perspective on modeling biological processes. Each chapter starts with an overview followed by the recent results obtained by authors. Lectures are self-contained and are devoted to various phenomena such as the evolution of the genetic code and genomes, age-structured populations, demography, sympatric speciation, the Penna model, Lotka-Volterra and other predator-prey models, evolutionary models of ecosystems, extinctions of species, and the origin and development of language. Authors analyze their models from the computational and mathematical points of view.
A definitive account of the origins of modern mathematical population genetics, first published in 2000.
Written to equip students in the mathematical siences to understand and model the epidemiological and experimental data encountered in genetics research. This second edition expands the original edition by over 100 pages and includes new material. Sprinkled throughout the chapters are many new problems.
This volume contains pedagogical and elementary introductions to genetics for mathematicians and physicists as well as to mathematical models and techniques of population dynamics. It also offers a physicist's perspective on modeling biological processes.Each chapter starts with an overview followed by the recent results obtained by authors. Lectures are self-contained and are devoted to various phenomena such as the evolution of the genetic code and genomes, age-structured populations, demography, sympatric speciation, the Penna model, Lotka-Volterra and other predator-prey models, evolutionary models of ecosystems, extinctions of species, and the origin and development of language. Authors analyze their models from the computational and mathematical points of view.
This is the first of a planned two-volume work discussing the mathematical aspects of population genetics with an emphasis on evolutionary theory. This volume draws heavily from the author’s 1979 classic, but it has been revised and expanded to include recent topics which follow naturally from the treatment in the earlier edition, such as the theory of molecular population genetics.
This work reflects sixteen hours of lectures delivered by the author at the 2009 St Flour summer school in probability. It provides a rapid introduction to a range of mathematical models that have their origins in theoretical population genetics. The models fall into two classes: forwards in time models for the evolution of frequencies of different genetic types in a population; and backwards in time (coalescent) models that trace out the genealogical relationships between individuals in a sample from the population. Some, like the classical Wright-Fisher model, date right back to the origins of the subject. Others, like the multiple merger coalescents or the spatial Lambda-Fleming-Viot process are much more recent. All share a rich mathematical structure. Biological terms are explained, the models are carefully motivated and tools for their study are presented systematically.
Mathematical methods have been applied successfully to population genet ics for a long time. Even the quite elementary ideas used initially proved amazingly effective. For example, the famous Hardy-Weinberg Law (1908) is basic to many calculations in population genetics. The mathematics in the classical works of Fisher, Haldane and Wright was also not very complicated but was of great help for the theoretical understanding of evolutionary pro cesses. More recently, the methods of mathematical genetics have become more sophisticated. In use are probability theory, stochastic processes, non linear differential and difference equations and nonassociative algebras. First contacts with topology have been established. Now in addition to the tra ditional movement of mathematics for genetics, inspiration is flowing in the opposite direction, yielding mathematics from genetics. The present mono grapll reflects to some degree both patterns but especially the latter one. A pioneer of this synthesis was S. N. Bernstein. He raised-and partially solved- -the problem of characterizing all stationary evolutionary operators, and this work was continued by the author in a series of papers (1971-1979). This problem has not been completely solved, but it appears that only cer tain operators devoid of any biological significance remain to be addressed. The results of these studies appear in chapters 4 and 5. The necessary alge braic preliminaries are described in chapter 3 after some elementary models in chapter 2.
The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.
The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications related to phenomena such as: boundary layer phenomena for viscous fluids, population dynamics,, dead core phenomena, etc. It addresses researchers and post-graduate students working at the interplay between mathematics and other fields of science and technology and is a comprehensive introduction to the theory of nonlinear partial differential equations and its main principles also presents their real-life applications in various contexts: mathematical physics, chemistry, mathematical biology, and population genetics. Based on the authors' original work, this volume provides an overview of the field, with examples suitable for researchers but also for graduate students entering research. The method of presentation appeals to readers with diverse backgrounds in partial differential equations and functional analysis. Each chapter includes detailed heuristic arguments, providing thorough motivation for the material developed later in the text. The content demonstrates in a firm way that partial differential equations can be used to address a large variety of phenomena occurring in and influencing our daily lives. The extensive reference list and index make this book a valuable resource for researchers working in a variety of fields and who are interested in phenomena modeled by nonlinear partial differential equations.​
Mathematics of Bioinformatics: Theory, Methods, and Applications provides a comprehensive format for connecting and integrating information derived from mathematical methods and applying it to the understanding of biological sequences, structures, and networks. Each chapter is divided into a number of sections based on the bioinformatics topics and related mathematical theory and methods. Each topic of the section is comprised of the following three parts: an introduction to the biological problems in bioinformatics; a presentation of relevant topics of mathematical theory and methods to the bioinformatics problems introduced in the first part; an integrative overview that draws the connections and interfaces between bioinformatics problems/issues and mathematical theory/methods/applications.