Download Free From Genes To Species Novel Insights From Metagenomics Book in PDF and EPUB Free Download. You can read online From Genes To Species Novel Insights From Metagenomics and write the review.

The majority of microbes in many environments are considered “as yet uncultured” and were traditionally considered inaccessible for study through the microbiological gold standard of pure culture. The emergence of metagenomic approaches has allowed researchers to access and study these microbes in a culture-independent manner through DNA sequencing and functional expression of metagenomic DNA in a heterologous host. Metagenomics has revealed an extraordinary degree of diversity and novelty, not only among microbial communities themselves, but also within the genomes of these microbes. This Research Topic aims to showcase the utility of metagenomics to gain insights on the microbial and genomic diversity in different environments by revealing the breadth of novelty that was in the past, largely untapped.
Although we can't usually see them, microbes are essential for every part of human life-indeed all life on Earth. The emerging field of metagenomics offers a new way of exploring the microbial world that will transform modern microbiology and lead to practical applications in medicine, agriculture, alternative energy, environmental remediation, and many others areas. Metagenomics allows researchers to look at the genomes of all of the microbes in an environment at once, providing a "meta" view of the whole microbial community and the complex interactions within it. It's a quantum leap beyond traditional research techniques that rely on studying-one at a time-the few microbes that can be grown in the laboratory. At the request of the National Science Foundation, five Institutes of the National Institutes of Health, and the Department of Energy, the National Research Council organized a committee to address the current state of metagenomics and identify obstacles current researchers are facing in order to determine how to best support the field and encourage its success. The New Science of Metagenomics recommends the establishment of a "Global Metagenomics Initiative" comprising a small number of large-scale metagenomics projects as well as many medium- and small-scale projects to advance the technology and develop the standard practices needed to advance the field. The report also addresses database needs, methodological challenges, and the importance of interdisciplinary collaboration in supporting this new field.
This volume provides up-to-date and novel techniques for various screening technologies currently used in metagenomics and related areas. Starting with DNA/RNA isolation from environmental samples, the book continues by delving into areas such as current methods used to isolate DNA and construct metagenomic libraries, establishment of metagenome libraries in non-E. coli hosts, and topics like function-driven mining of metagenomic DNA, screening and analyzing protocols for a wide array of different genes encoding enzymes, bacterial viruses and much more. Written for the highly successful Methods in Molecular Biology series, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step and readily reproducible protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Metagenomics: Methods and Protocols, Third Edition provides a comprehensive collection of up-to-date metagenome protocols and tools for the recovery of many major types of biocatalysts and allows for the easy setup of these screens in microbiology laboratories.
Here is a manual for an environmental scientist who wishes to embrace genomics to answer environmental questions. The volume covers: gene expression profiling, whole genome and chromosome mutation detection, and methods to assay genome diversity and polymorphisms within a particular environment. This book provides a systematic framework for determining environmental impact and ensuring human health and the sustainability of natural populations.
Discover biomolecular engineering technologies for the production of biofuels, pharmaceuticals, organic and amino acids, vitamins, biopolymers, surfactants, detergents, and enzymes In Biomolecular Engineering Solutions for Renewable Specialty Chemicals, distinguished researchers and editors Drs. R. Navanietha Krishnaraj and Rajesh K. Sani deliver a collection of insightful resources on advanced technologies in the synthesis and purification of value-added compounds. Readers will discover new technologies that assist in the commercialization of the production of value-added products. The editors also include resources that offer strategies for overcoming current limitations in biochemical synthesis, including purification. The articles within cover topics like the rewiring of anaerobic microbial processes for methane and hythane production, the extremophilic bioprocessing of wastes to biofuels, reverse methanogenesis of methane to biopolymers and value-added products, and more. The book presents advanced concepts and biomolecular engineering technologies for the production of high-value, low-volume products, like therapeutic molecules, and describes methods for improving microbes and enzymes using protein engineering, metabolic engineering, and systems biology approaches for converting wastes. Readers will also discover: A thorough introduction to engineered microorganisms for the production of biocommodities and microbial production of vanillin from ferulic acid Explorations of antibiotic trends in microbial therapy, including current approaches and future prospects, as well as fermentation strategies in the food and beverage industry Practical discussions of bioactive oligosaccharides, including their production, characterization, and applications In-depth treatments of biopolymers, including a retrospective analysis in the facets of biomedical engineering Perfect for researchers and practicing professionals in the areas of environmental and industrial biotechnology, biomedicine, and the biological sciences, Biomolecular Engineering Solutions for Renewable Specialty Chemicals is also an invaluable resource for students taking courses involving biorefineries, biovalorization, industrial biotechnology, and environmental biotechnology.
Environmental protection and resource recovery are two crucial issues facing our society in the 21st century. Anaerobic biotechnology has become widely accepted by the wastewater industry as the better alternative to the more conventional but costly aerobic process and tens of thousands of full-scale facilities using this technology have been installed worldwide in the past two decades. Anaerobic Biotechnology is the sequel to the well-received Environmental Anaerobic Technology: Applications and New Developments (2010) and compiles developments over the past five years. This volume contains contributions from 48 renowned experts from across the world, including Gatze Lettinga, laureate of the 2007 Tyler Prize and the 2009 Lee Kuan Yew Water Prize, and Perry McCarty, whose pioneering work laid the foundations for today's anaerobic biotechnology. This book is ideal for engineers and scientists working in the field, as well as decision-makers on energy and environmental policies.
In this book, the latest tools available for functional metagenomics research are described.This research enables scientists to directly access the genomes from diverse microbial genomes at one time and study these “metagenomes”. Using the modern tools of genome sequencing and cloning, researchers have now been able to harness this astounding metagenomic diversity to understand and exploit the diverse functions of microorganisms. Leading scientists from around the world demonstrate how these approaches have been applied in many different settings, including aquatic and terrestrial habitats, microbiomes, and many more environments. This is a highly informative and carefully presented book, providing microbiologists with a summary of the latest functional metagenomics literature on all specific habitats.
Biotechnological Advances for Microbiology, Molecular Biology, and Nanotechnology: An Interdisciplinary Approach to the Life Sciences presents cutting-edge research associated with the beneficial implications of biotechnology on human welfare. The volume mainly focuses on the highly demanding thrust areas of biotechnology that are microbiology, molecular biology, and nanotechnology. The book provides a detailed overview of the beneficial roles of microbes and nanotechnology-based engineered particles in biological developments. Also, it highlights the role of epigenetic machinery and redox modulators during the development of diseases. In addition, it provides research on nanotechnology-based applications in tissue engineering, stem cell, and regenerative medicines. Overall, the book provides an extended platform for acquiring the methodological knowledge needed for today’s biotechnological applications, such as DNA methylation, redox homeostasis, CRISPR, nano-based drug delivery systems, proteomics, genomics, metagenomics, bioluminescence, bioreactors, bioremediation, biosensors, etc. Divided into three sections, the book first highlights some recent trends in applied microbiology used in different areas, such as crop improvement, wastewater treatment, drug delivery, healthcare management, and more. The volume goes on to cover some advances in cellular and molecular mechanisms, such as CRISPR technology in biological systems, induced stem cells in disease prevention, integrated omics technology, and others. The volume also explores the indispensable role of nanotechnology in the precisely modulating intricate functioning of an organism in diagnostic and therapy along its application in tissue engineering and regenerative medicine and in food science as well as its role in ecological sustainability. This multidisciplinary volume will be highly valuable for the researchers, scientists, biologists, and faculty and students striving to expand their horizon of knowledge in their respective fields.