Download Free From Clinical Trials To Real World Data Sciences Evidence Based Medicine For Value In Health Book in PDF and EPUB Free Download. You can read online From Clinical Trials To Real World Data Sciences Evidence Based Medicine For Value In Health and write the review.

Drawing on the work of the Roundtable on Evidence-Based Medicine, the 2007 IOM Annual Meeting assessed some of the rapidly occurring changes in health care related to new diagnostic and treatment tools, emerging genetic insights, the developments in information technology, and healthcare costs, and discussed the need for a stronger focus on evidence to ensure that the promise of scientific discovery and technological innovation is efficiently captured to provide the right care for the right patient at the right time. As new discoveries continue to expand the universe of medical interventions, treatments, and methods of care, the need for a more systematic approach to evidence development and application becomes increasingly critical. Without better information about the effectiveness of different treatment options, the resulting uncertainty can lead to the delivery of services that may be unnecessary, unproven, or even harmful. Improving the evidence-base for medicine holds great potential to increase the quality and efficiency of medical care. The Annual Meeting, held on October 8, 2007, brought together many of the nation's leading authorities on various aspects of the issues - both challenges and opportunities - to present their perspectives and engage in discussion with the IOM membership.
Data sharing can accelerate new discoveries by avoiding duplicative trials, stimulating new ideas for research, and enabling the maximal scientific knowledge and benefits to be gained from the efforts of clinical trial participants and investigators. At the same time, sharing clinical trial data presents risks, burdens, and challenges. These include the need to protect the privacy and honor the consent of clinical trial participants; safeguard the legitimate economic interests of sponsors; and guard against invalid secondary analyses, which could undermine trust in clinical trials or otherwise harm public health. Sharing Clinical Trial Data presents activities and strategies for the responsible sharing of clinical trial data. With the goal of increasing scientific knowledge to lead to better therapies for patients, this book identifies guiding principles and makes recommendations to maximize the benefits and minimize risks. This report offers guidance on the types of clinical trial data available at different points in the process, the points in the process at which each type of data should be shared, methods for sharing data, what groups should have access to data, and future knowledge and infrastructure needs. Responsible sharing of clinical trial data will allow other investigators to replicate published findings and carry out additional analyses, strengthen the evidence base for regulatory and clinical decisions, and increase the scientific knowledge gained from investments by the funders of clinical trials. The recommendations of Sharing Clinical Trial Data will be useful both now and well into the future as improved sharing of data leads to a stronger evidence base for treatment. This book will be of interest to stakeholders across the spectrum of research-from funders, to researchers, to journals, to physicians, and ultimately, to patients.
The volume and complexity of information about individual patients is greatly increasing with use of electronic records and personal devices. Potential effects on medical product development in the context of this wealth of real-world data could be numerous and varied, ranging from the ability to determine both large-scale and patient-specific effects of treatments to the ability to assess how therapeutics affect patients' lives through measurement of lifestyle changes. In October 2016, the National Academies of Sciences, Engineering, and Medicine held a workshop to facilitate dialogue among stakeholders about the opportunities and challenges for incorporating real-world evidence into all stages in the process for the generation and evaluation of therapeutics. Participants explored unmet stakeholder needs and opportunities to generate new kinds of evidence that meet those needs. This publication summarizes the presentations and discussions from the workshop.
In the realm of health care, privacy protections are needed to preserve patients' dignity and prevent possible harms. Ten years ago, to address these concerns as well as set guidelines for ethical health research, Congress called for a set of federal standards now known as the HIPAA Privacy Rule. In its 2009 report, Beyond the HIPAA Privacy Rule: Enhancing Privacy, Improving Health Through Research, the Institute of Medicine's Committee on Health Research and the Privacy of Health Information concludes that the HIPAA Privacy Rule does not protect privacy as well as it should, and that it impedes important health research.
This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.
Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.
Real-world evidence (RWE) has been at the forefront of pharmaceutical innovations. It plays an important role in transforming drug development from a process aimed at meeting regulatory expectations to an operating model that leverages data from disparate sources to aid business, regulatory, and healthcare decision making. Despite its many benefits, there is no single book systematically covering the latest development in the field. Written specifically for pharmaceutical practitioners, Real-World Evidence in Drug Development and Evaluation, presents a wide range of RWE applications throughout the lifecycle of drug product development. With contributions from experienced researchers in the pharmaceutical industry, the book discusses at length RWE opportunities, challenges, and solutions. Features Provides the first book and a single source of information on RWE in drug development Covers a broad array of topics on outcomes- and value-based RWE assessments Demonstrates proper Bayesian application and causal inference for real-world data (RWD) Presents real-world use cases to illustrate the use of advanced analytics and statistical methods to generate insights Offers a balanced discussion of practical RWE issues at hand and technical solutions suitable for practitioners with limited data science expertise
In the wake of publicity and congressional attention to drug safety issues, the Food and Drug Administration (FDA) requested the Institute of Medicine assess the drug safety system. The committee reported that a lack of clear regulatory authority, chronic underfunding, organizational problems, and a scarcity of post-approval data about drugs' risks and benefits have hampered the FDA's ability to evaluate and address the safety of prescription drugs after they have reached the market. Noting that resources and therefore efforts to monitor medications' riskâ€"benefit profiles taper off after approval, The Future of Drug Safety offers a broad set of recommendations to ensure that consideration of safety extends from before product approval through the entire time the product is marketed and used.
Randomized controlled trials (RCTs) have traditionally served as the gold standard for generating evidence about medical interventions. However, RCTs have inherent limitations and may not reflect the use of medical products in the real world. Additionally, RCTs are expensive, time consuming, and cannot answer all questions about a product or intervention. Evidence generated from real-world use, such as real-world evidence (RWE) may provide valuable information, alongside RCTs, to inform medical product decision making. To explore the potential for using RWE in medical product decision making, the National Academies of Sciences, Engineering, and Medicine planned a three-part workshop series. The series was designed to examine the current system of evidence generation and its limitations, to identify when and why RWE may be an appropriate type of evidence on which to base decisions, to learn from successful initiatives that have incorporated RWE, and to describe barriers that prevent RWE from being used to its full potential. This publication summarizes the discussions from the entire workshop series.