Download Free From Atoms To Galaxies Book in PDF and EPUB Free Download. You can read online From Atoms To Galaxies and write the review.

College students in the United States are becoming increasingly incapable of differentiating between proven facts delivered by scientific inquiry and the speculations of pseudoscience. In an effort to help stem this disturbing trend, From Atoms to Galaxies: A Conceptual Physics Approach to Scientific Awareness teaches heightened scientific acuity as it educates students about the physical world and gives them answers to questions large and small. Written by Sadri Hassani, the author of several mathematical physics textbooks, this work covers the essentials of modern physics, in a way that is as thorough as it is compelling and accessible. Some of you might want to know ... . . . How did Galileo come to think about the first law of motion? . . . Did Newton actually discover gravity by way of an apple and an accident? Or maybe you have mulled over... . . . Is it possible for Santa Claus to deliver all his toys? . . . Is it possible to prove that Elvis does not visit Graceland every midnight? Or perhaps you’ve even wondered ... . . . If ancient Taoism really parallels modern physics? . . . If psychoanalysis can actually be called a science? . . . How it is that some philosophies of science may imply that a 650-year-old woman can give birth to a child? No Advanced Mathematics Required A primary textbook for undergraduate students not majoring in physics, From Atoms to Galaxies examines physical laws and their consequences from a conceptual perspective that requires no advanced mathematics. It explains quantum physics, relativity, nuclear and particle physics, gauge theory, quantum field theory, quarks and leptons, and cosmology. Encouraging students to subscribe to proven causation rather than dramatic speculation, the book: Defines the often obscured difference between science and technology, discussing how this confusion taints both common culture and academic rigor Explores the various philosophies of science, demonstrating how errors in our understanding of scientific principles can adversely impact scientific awareness Exposes how pseudoscience and New Age mysticism advance unproven conjectures as dangerous alternatives to proven science Based on courses taught by the author for over 15 years, this textbook has been developed to raise the scientific awareness of the untrained reader who lacks a technical or mathematical background. To accomplish this, the book lays the foundation of the laws that govern our universe in a nontechnical way, emphasizing topics that excite the mind, namely those taken from modern physics, and exposing the abuses made of them by the New Age gurus and other mystagogues. It outlines the methods developed by physicists for the scientific investigation of nature, and contrasts them with those developed by the outsiders who claim to be the owners of scientific methodology. Each chapter includes essays, which use the material developed in that chapter to debunk misconceptions, clarify the nature of science, and explore the history of physics as it relates to the development of ideas. Noting the damage incurred by confusing science and technology, the book strives to help the reader to emphatically demarcate the two, while clearly demonstrating that science is the only element capable of advancing technology.
This book is the first of its kind devoted to the key role played by light and electromagnetic radiation in the universe. Readers are introduced to philosophical hypotheses such as the economy, symmetry and the universality of natural laws, and are then guided to practical consequences such as the rules of geometrical optics and even Einstein''s well-known but mysterious relationship, E = mc2. Most chapters feature a pen picture of the life and character of a relevant scientific figure. These OCyHistorical InterludesOCO include, among others, Galileo''s conflicts with the Inquisition, Fourier''s taunting of the guillotine, Neils Bohr and World War II, and the unique character of Richard Feynman.The second edition has been revised and made more accessible to the general reader. Whenever possible, the mathematical material of the first edition has been replaced by appropriate text to give a verbal account of the mystery of the phenomenon of light and how its understanding has developed from pre-historic to present times. The emphasis is on reading for interest and enjoyment; formulae or equations which underpin and reinforce the argument are presented in a form which does not interfere with the flow of the text.The book will be of interest to students and teachers, as well as general readers interested in physics.
From the speed of light to moving mountains -- and everything in between -- Zoom explores how the universe and its objects move. If you sit as still as you can in a quiet room, you might be able to convince yourself that nothing is moving. But air currents are still wafting around you. Blood rushes through your veins. The atoms in your chair jiggle furiously. In fact, the planet you are sitting on is whizzing through space thirty-five times faster than the speed of sound. Natural motion dominates our lives and the intricate mechanics of the world around us. In Zoom, Bob Berman explores how motion shapes every aspect of the universe, literally from the ground up. With an entertaining style and a gift for distilling the wondrous, Berman spans astronomy, geology, biology, meteorology, and the history of science, uncovering how clouds stay aloft, how the Earth's rotation curves a home run's flight, and why a mosquito's familiar whine resembles a telephone's dial tone. For readers who love to get smarter without realizing it, Zoom bursts with science writing at its best.
Take an engrossing journey to explore the awesome ideas of science, with Dr. Art as your guide. Travel through atoms, energy forces, and the universe—and discover that it is all more amazing than you could imagine! Venture beyond the Milky Way with Dr. Art to discover the vastness of space, the depths of time, and how ancient explosions in our galaxy generated stardust that infuses our planet—and even our bodies—to this day. You’ll learn why there is no such thing as empty space, how energy and matter are related, and the meaning of Einstein’s famous equation!
This book is the first of its kind devoted to the key role played by light and electromagnetic radiation in the universe. Readers are introduced to philosophical hypotheses such as the economy, symmetry and the universality of natural laws, and are then guided to practical consequences such as the rules of geometrical optics and even Einstein's well-known but mysterious relationship, E = mc2. Most chapters feature a pen picture of the life and character of a relevant scientific figure. These ‘Historical Interludes’ include, among others, Galileo's conflicts with the Inquisition, Fourier's taunting of the guillotine, Neils Bohr and World War II, and the unique character of Richard Feynman.The second edition has been revised and made more accessible to the general reader. Whenever possible, the mathematical material of the first edition has been replaced by appropriate text to give a verbal account of the mystery of the phenomenon of light and how its understanding has developed from pre-historic to present times. The emphasis is on reading for interest and enjoyment; formulae or equations which underpin and reinforce the argument are presented in a form which does not interfere with the flow of the text.The book will be of interest to students and teachers, as well as general readers interested in physics.
This book is the first of its kind to devote itself at this level to the key role played by light and electromagnetic radiation in the universe. Readers are introduced to philosophical hypotheses such as the economy, symmetry, and universality of natural laws, and are then guided to practical consequences such as the rules of geometrical optics and even Einstein's well-known but mysterious relationship, E = mc2. Most chapters feature a pen picture of the life and character of a relevant scientific figure. These “Historical Interludes” include, among others, Galileo's conflicts with the Inquisition, Fourier's taunting of the guillotine, Neils Bohr and World War II, and the unique character of Richard Feynman.Going one step beyond the popular level, this easy-to-read book gives an overall view to undergraduate and postgraduate physics students that is often missing when trying to assimilate the technical details of their courses. Through its original treatment of topics and enjoyable style of writing, it will also stimulate keen interest in general readers who are interested in science and have a basic mathematics background as well as teachers looking for basic and accurate background information./a
Discusses discoveries in modern astronomy and how they have affected the study of the universe, its origin, and evolution.
A new look at the first few seconds after the Big Bang—and how research into these moments continues to revolutionize our understanding of our universe Scientists in the past few decades have made crucial discoveries about how our cosmos evolved over the past 13.8 billion years. But there remains a critical gap in our knowledge: we still know very little about what happened in the first seconds after the Big Bang. At the Edge of Time focuses on what we have recently learned and are still striving to understand about this most essential and mysterious period of time at the beginning of cosmic history. Delving into the remarkable science of cosmology, Dan Hooper describes many of the extraordinary and perplexing questions that scientists are asking about the origin and nature of our world. Hooper examines how we are using the Large Hadron Collider and other experiments to re-create the conditions of the Big Bang and test promising theories for how and why our universe came to contain so much matter and so little antimatter. We may be poised to finally discover how dark matter was formed during our universe’s first moments, and, with new telescopes, we are also lifting the veil on the era of cosmic inflation, which led to the creation of our world as we know it. Wrestling with the mysteries surrounding the initial moments that followed the Big Bang, At the Edge of Time presents an accessible investigation of our universe and its origin.
How patterns--from diagrams of spacetime to particle trails revealed by supercolliders--offer clues to the fundamental workings of the physical world. Our universe might appear chaotic, but deep down it's simply a myriad of rules working independently to create patterns of action, force, and consequence. In Ten Patterns That Explain the Universe, Brian Clegg explores the phenomena that make up the very fabric of our world by examining ten essential sequenced systems. From diagrams that show the deep relationships between space and time to the quantum behaviors that rule the way that matter and light interact, Clegg shows how these patterns provide a unique view of the physical world and its fundamental workings. Guiding readers on a tour of our world and the universe beyond, Clegg describes the cosmic microwave background, sometimes called the "echo of the big bang," and how it offers clues to the universe's beginnings; the diagrams that illustrate Einstein's revelation of the intertwined nature of space and time; the particle trail patterns revealed by the Large Hadron Collider and other accelerators; and the simple-looking patterns that predict quantum behavior (and decorated Richard Feynman's van). Clegg explains how the periodic table reflects the underlying pattern of the configuration of atoms, discusses the power of the number line, demonstrates the explanatory uses of tree diagrams, and more.