Download Free Frobenius Manifolds And Moduli Spaces For Singularities Book in PDF and EPUB Free Download. You can read online Frobenius Manifolds And Moduli Spaces For Singularities and write the review.

This book presents the theory of Frobenius manifolds, as well as all the necessary tools and several applications.
This is the first monograph dedicated to the systematic exposition of the whole variety of topics related to quantum cohomology. The subject first originated in theoretical physics (quantum string theory) and has continued to develop extensively over the last decade. The author's approach to quantum cohomology is based on the notion of the Frobenius manifold. The first part of the book is devoted to this notion and its extensive interconnections with algebraic formalism of operads, differential equations, perturbations, and geometry. In the second part of the book, the author describes the construction of quantum cohomology and reviews the algebraic geometry mechanisms involved in this construction (intersection and deformation theory of Deligne-Artin and Mumford stacks). Yuri Manin is currently the director of the Max-Planck-Institut für Mathematik in Bonn, Germany. He has authored and coauthored 10 monographs and almost 200 research articles in algebraic geometry, number theory, mathematical physics, history of culture, and psycholinguistics. Manin's books, such as Cubic Forms: Algebra, Geometry, and Arithmetic (1974), A Course in Mathematical Logic (1977), Gauge Field Theory and Complex Geometry (1988), Elementary Particles: Mathematics, Physics and Philosophy (1989, with I. Yu. Kobzarev), Topics in Non-commutative Geometry (1991), and Methods of Homological Algebra (1996, with S. I. Gelfand), secured for him solid recognition as an excellent expositor. Undoubtedly the present book will serve mathematicians for many years to come.
Quantum cohomology, the theory of Frobenius manifolds and the relations to integrable systems are flourishing areas since the early 90's. An activity was organized at the Max-Planck-Institute for Mathematics in Bonn, with the purpose of bringing together the main experts in these areas. This volume originates from this activity and presents the state of the art in the subject.
This volume contains the proceedings of the workshop Crossing the Walls in Enumerative Geometry, held in May 2018 at Snowbird, Utah. It features a collection of both expository and research articles about mirror symmetry, quantized singularity theory (FJRW theory), and the gauged linear sigma model. Most of the expository works are based on introductory lecture series given at the workshop and provide an approachable introduction for graduate students to some fundamental topics in mirror symmetry and singularity theory, including quasimaps, localization, the gauged linear sigma model (GLSM), virtual classes, cosection localization, $p$-fields, and Saito's primitive forms. These articles help readers bridge the gap from the standard graduate curriculum in algebraic geometry to exciting cutting-edge research in the field. The volume also contains several research articles by leading researchers, showcasing new developments in the field.
This book arose from a conference on “Singularities and Computer Algebra” which was held at the Pfalz-Akademie Lambrecht in June 2015 in honor of Gert-Martin Greuel’s 70th birthday. This unique volume presents a collection of recent original research by some of the leading figures in singularity theory on a broad range of topics including topological and algebraic aspects, classification problems, deformation theory and resolution of singularities. At the same time, the articles highlight a variety of techniques, ranging from theoretical methods to practical tools from computer algebra.Greuel himself made major contributions to the development of both singularity theory and computer algebra. With Gerhard Pfister and Hans Schönemann, he developed the computer algebra system SINGULAR, which has since become the computational tool of choice for many singularity theorists.The book addresses researchers whose work involves singularity theory and computer algebra from the PhD to expert level.
This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.
This book collects various perspectives, contributed by both mathematicians and physicists, on the B-model and its role in mirror symmetry. Mirror symmetry is an active topic of research in both the mathematics and physics communities, but among mathematicians, the “A-model” half of the story remains much better-understood than the B-model. This book aims to address that imbalance. It begins with an overview of several methods by which mirrors have been constructed, and from there, gives a thorough account of the “BCOV” B-model theory from a physical perspective; this includes the appearance of such phenomena as the holomorphic anomaly equation and connections to number theory via modularity. Following a mathematical exposition of the subject of quantization, the remainder of the book is devoted to the B-model from a mathematician’s point-of-view, including such topics as polyvector fields and primitive forms, Givental’s ancestor potential, and integrable systems.
"Ideas from quantum field theory and string theory have had an enormous impact on geometry over the last two decades. One extremely fruitful source of new mathematical ideas goes back to the works of Cecotti, Vafa, et al. around 1991 on the geometry of topological field theory. Their tt*-geometry (tt* stands for topological-antitopological) was motivated by physics, but it turned out to unify ideas from such separate branches of mathematics as singularity theory, Hodge theory, integrable systems, matrix models, and Hurwitz spaces. The interaction among these fields suggested by tt*-geometry has become a fast moving and exciting research area. This book, loosely based on the 2007 Augsburg, Germany workshop "From tQFT to tt* and Integrability", is the perfect introduction to the range of mathematical topics relevant to tt*-geometry. It begins with several surveys of the main features of tt*-geometry, Frobenius manifolds, twistors, and related structures in algebraic and differential geometry, each starting from basic definitions and leading to current research. The volume moves on to explorations of current foundational issues in Hodge theory: higher weight phenomena in twistor theory and non-commutative Hodge structures and their relation to mirror symmetry. The book concludes with a series of applications to integrable systems and enumerative geometry, exploring further extensions and connections to physics. With its progression through introductory, foundational, and exploratory material, this book is an indispensable companion for anyone working in the subject or wishing to enter it."--Publisher's website.
Singularity theory appears in numerous branches of mathematics, as well as in many emerging areas such as robotics, control theory, imaging, and various evolving areas in physics. The purpose of this proceedings volume is to cover recent developments in singularity theory and to introduce young researchers from developing countries to singularities in geometry and topology. The contributions discuss singularities in both complex and real geometry. As such, they provide a natural continuation of the previous school on singularities held at ICTP (1991), which is recognized as having had a major influence in the field.
Singularity theory appears in numerous branches of mathematics, as well as in many emerging areas such as robotics, control theory, imaging, and various evolving areas in physics. The purpose of this proceedings volume is to cover recent developments in singularity theory and to introduce young researchers from developing countries to singularities in geometry and topology.The contributions discuss singularities in both complex and real geometry. As such, they provide a natural continuation of the previous school on singularities held at ICTP (1991), which is recognized as having had a major influence in the field.